Supplemental Handout # 6

Symmetry Properties of Electromagnetism

The various field and source quantities, such as $\vec{E}, \vec{D}, \vec{P}, \vec{H}, \vec{B}, \vec{M}$ e.g. $\vec{j}_m, \vec{v}, \epsilon, \mu, \vec{L}, \vec{S}, \ldots$ etc. have various symmetry properties under symmetry operations such as:

$P \equiv$ Parity (Space-Inversion, $\vec{r} \rightarrow -\vec{r}$) \rightarrow Reflection in a mirror

$T \equiv$ Time Reversal (e.g. particle motion, but run backwards in time)

$C \equiv$ Electric Charge Conjugation (Charge of Particle \rightarrow Charge of Antiparticle, e.g. $e^- \rightarrow e^+$)

$M \equiv$ Magnetic Charge Conjugation (Magnetically Charged Particle \rightarrow Magnetically charged antiparticle, e.g. $g_N \rightarrow g_\bar{N}$)

The field and source quantities mentioned above fall into various generic mathematical classes of objects, or quantities:

1) Scalar quantities under a given symmetry transformation, designated ϕ.
2) Pseudoscalar quantities under a given symmetry transformation, designated p.
3) Polar Vector quantities under a given symmetry transformation, designated V.
4) Axial, or Pseudo-Vector quantities under a given symmetry transformation, designated A.
5) N^{th} rank covariant / contravariant tensors under a given symmetry transformation, $T_{\mu\nu}, T^{\mu\nu}, T_{\mu}, T_{\nu}, T^{\mu\nu}, T_{\alpha\beta\gamma}$, ...

Note that, e.g.:
Electric charge q is ODD under electric charge conjugation: $Ce^- = e^+$ (i.e. q behaves as a pseudoscalar quantity p under C)

Magnetic charge g_m is ODD under magnetic charge conjugation: $Mg_m^- = g_m^+$ (i.e. g_m behaves as a pseudoscalar quantity p under M)

However note also that, e.g.:
Electric charge is EVEN under magnetic charge conjugation: $Me^- = e^-$ (i.e. q behaves as a scalar quantity ϕ under M.)

Magnetic charge is EVEN under electric charge conjugation: $Cg_m^- = g_m^-$ (i.e. g_m behaves as a scalar quantity ϕ under C.)

Note also that (if \exists no magnetic charges) the combined operations $CPT = 1$ (in any order) (i.e. $CPT = \text{identity operator}$). If have magnetic charges, then $CPTM = 1$ (in any order).
In order to understand the distinction between Polar Vectors and Axial (or Pseudo)-Vectors under a specific symmetry transformation, consider parity P (i.e. mirror-reflection) operation:

Polar Vector \vec{V}

- e.g. direction vector \vec{r}
 - Parity is space-inversion
 - i.e. $\vec{r} \rightarrow -\vec{r}$
 - $x \rightarrow -x$
 - $y \rightarrow -y$
 - $z \rightarrow -z$

 \parallel-component of \vec{V} unchanged under Parity
 i.e. $PV_\parallel = V_\parallel$

 \perp-component of \vec{V} changes sign under Parity
 i.e. $PV_\perp = -V_\perp$

Axial (or Pseudo) Vector \vec{A}

- e.g. spinning top – angular momentum \vec{L}

 \parallel-components of \vec{A} reversed under Parity
 i.e. $PA_\parallel = -A_\parallel$

 \perp-components of \vec{A} unchanged under Parity
 i.e. $PA_\perp = A_\perp$

Time Reversal:

Particle Moving with Velocity \vec{v}

\[\vec{v} = T\vec{v} = -\vec{v} \] (velocity is odd under Time reversal)
Electric Current Flowing in a Long Wire:

\[
\begin{align*}
\mathbf{B} & \quad \mathbf{E} \\
I, \mathbf{v}, \mathbf{j}^f & \quad \text{Time Reversed:} \quad I', \mathbf{v}', \mathbf{j}^f' \\
\end{align*}
\]

\[
\begin{align*}
\therefore \quad T \mathbf{v}_d &= -\mathbf{v}_d & \mathbf{j}_e^{\text{free}} &= n_e q \mathbf{v}_d \\
T \mathbf{j}_e^{\text{free}} &= -\mathbf{j}_e^{\text{free}} & Te^- &= e^- (q \text{ is even under } T) \\
TI = -I & \quad \text{all} & \mathbf{B} &= \frac{\mu_0}{4\pi} \left(\mathbf{I} \times d\mathbf{l} \right) \\
T\mathbf{B} &= -\mathbf{B} & \text{odd} & T\mathbf{B} &= \mu \mathbf{H} \\
T\mathbf{H} &= -\mathbf{H} & \text{under} & T\mathbf{H} &= \mu_0 \mathbf{H} + \mathbf{M} \\
T\mathbf{M} &= -\mathbf{M} & T & \mathbf{M} &= -\mathbf{M} \\
\end{align*}
\]

Current Flowing in a Loop:

\[
\begin{align*}
\therefore \quad T\mathbf{m} &= -\mathbf{m} & (\text{mag. dipole moment}) \\
\text{And} \quad T\mathbf{M} &= -\mathbf{M} & (\text{magnetization}) \\
\end{align*}
\]

By considering a parallel-plate capacitor, it can be seen that \(\mathbf{E}, \mathbf{D} \) and \(\mathbf{P} \) fields, \(\mathbf{p} \) = electric dipole moment, \(\varepsilon \) = permittivity, etc. are all even under time reversal.

\[
\begin{align*}
T\mathbf{E} &= \mathbf{E} & (\text{e.g. } \mathbf{E} = \frac{1}{4\pi \varepsilon_0} \left(\frac{q}{r^2} \right) \hat{r}) \\
Tq &= +q & (\text{even under } T) \\
T\mathbf{P} &= \mathbf{P} \\
T\mathbf{D} &= \mathbf{D} = \varepsilon \mathbf{E} \\
T \varepsilon &= \varepsilon \\
\end{align*}
\]
Parity and Magnetic Fields

Electric Charge Conjugation & Magnetic Fields

Time Reversal & Magnetic Fields

Magnetic Charge Conjugation & Magnetic Fields
Summary of Symmetry Properties of Kinematic & Electromagnetic Quantities

$\phi \equiv$ Scalar Quantity \quad $p \equiv$ Pseudoscalar Quantity \quad $\vec{V} =$ Polar Vector \quad $\vec{A} =$ Axial Vector (Pseudo-Vector)

<table>
<thead>
<tr>
<th>Kinematic and/or Electromagnetic Quantity</th>
<th>Parity (\mathcal{P})</th>
<th>Charge Reversal (\mathcal{C})</th>
<th>Time Reversal (\mathcal{T})</th>
<th>Magnetic Charge Reversal (\mathcal{M})</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>$+$</td>
<td>$+$</td>
<td>$+$</td>
<td>$+$</td>
</tr>
<tr>
<td>$\vec{r} = e\vec{r}$</td>
<td>$-$</td>
<td>$+$</td>
<td>$-$</td>
<td>$+$</td>
</tr>
<tr>
<td>$\vec{p} = m\vec{r}$</td>
<td>$+$</td>
<td>$+$</td>
<td>$+$</td>
<td>$+$</td>
</tr>
<tr>
<td>$\vec{a} = \frac{d\vec{v}}{dt}$</td>
<td>$-$</td>
<td>$+$</td>
<td>$+$</td>
<td>$+$</td>
</tr>
<tr>
<td>$\vec{E} = \nabla \phi$</td>
<td>$+$</td>
<td>$+$</td>
<td>$+$</td>
<td>$+$</td>
</tr>
<tr>
<td>$\vec{B} = \nabla \times \vec{A}$</td>
<td>$+$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>$\vec{E} = \rho / \varepsilon$</td>
<td>$+$</td>
<td>$+$</td>
<td>$+$</td>
<td>$+$</td>
</tr>
<tr>
<td>$\vec{B} = \mu / \varepsilon$</td>
<td>$+$</td>
<td>$+$</td>
<td>$+$</td>
<td>$+$</td>
</tr>
<tr>
<td>$\vec{E} \cdot \vec{A} = \vec{E} \times \vec{A}$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
</tbody>
</table>

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2005 - 2008. All rights reserved.