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LECTURE NOTES 7
LAPLACE’S EQUATION

As we have seen in previous lectures, very often the primary task in an electrostatics problem
is e.g. to determine the electric field E (;7 ) of a given stationary/static charge distribution

— e.g. via Coulomb’s Law:

Charge density
p(7) Z
A Field Point
Source r=r—r_ye P
Point(s) /

r
Volum >
element dz’ 0] h%
in volume V'
X
E(7)=— ji (7)dr' ST L S i
4re, d 1 r| |7 -7

Oftentimes p(7') is complicated, and analytic calculation of E(7) is painful / tedious (or just

plain hard). (Numerical integration on a computer is likely faster/easier. . . )

Oftentimes it is easier to first calculate the potential ¥ (7), and then use E(7)=-VV (7)

Here: V(17):41 j%p(?’)df'
e,

v

But even doing this integral analytically often can be very challenging. . .
Furthermore, often in problems involving conductors, p(?’) may not apriori (i.e. beforehand)
be known! Charge is free to move around, and often only the total free charge Oj.. is controlled

/ known in the problem.

In such cases, it is usually better to recast the problem in DIFFERENTIAL form, using Poisson’s
equation:
p(7)

£

o

VeE(F)=-VVV (F)=-VV (F) =

2 ( p(7 . :
Or: VIV (F)= - (") & Poisson’s Equation
80
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Poisson’s equation, together with the boundary conditions associated with the value(s) allowed
for V (17 ) e.g. on various conducting surfaces, or at r = oo, efc. enables one to uniquely determine

V(F) (we’ll see how / why shortly. . .).

The Poisson equation is an inhomogeneous second-order differential equation — its solution
consists of a particular solution for the inhomogeneous term (RHS of Poisson’s Equation) plus
the general solution for the homogeneous second-order differential equation:

V¥ (7)=0| < Laplace’s Equation

commensurate with the boundary conditions for the specific problem at hand.

Very often, in fact, we are interested in finding the potential V' (77 ) in a charge-free region,
containing no electric charge, i.e. where p(7')=0.

If p(#')=0, then V*¥(F)=0 and the TRIVIAL solution is ¥ (#)=0 V 7, which is boring /
useless!

We seek physically meaningful / non-trivial solutions V(F ) # 0 that satisfy VZV(F ) =0 and the

boundary conditions on ¥ (7) for a given physical problem.

Now, before we go any further on this discussion, let’s back up a bit and take a (very) broad
generalized MATHEMATICAL view (or approach) to find V' (F ) .

First, let’s simplify the discussion, by talking about one-dimensional problems:

If p(x) =0, Laplace’s Equation in one-dimension becomes (in rectangular/Cartesian

coordinates):

sz(x)
dx*

VIV (F)=0 = =0| < Note the total (not partial) derivative with regards to x.

Integrating this equation (both sides) once, we have:

2
J.dVT(x)dx = J-i{dV—(x)] dx = J-d (d—Vj = dV_(x) = .[dx =m =1" constant of integration
d"x dx\ dx dx dx

Then: JdV(x)ﬂf:dex:dex

Or: IdV(x) =V(x)=mx+b « 2" constant of integration

. . N ) d*V(x
So: V(x)=b+mx (equation for a straight line) is the general solution for 7 (2 ) =0.
x
y-intercept slope
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Depending on the boundary conditions for the problem, e.g. suppose V' (x = 5) =0 Volts and

V' (x =1) =4 Volts, then together, these two boundary conditions uniguely specify what b and m

must be — we have two equations, and two unknowns (m & b) — solve simultaneously:

V(x)=b+mx « equation for a straight line

y-intercept

slope
V(x=5)=0=b+5m — b=-5m
V(le):4:b+1m - 4=-"Sm+Im=-4m
V(x)=5-1x or: m=—1and b=5
V(x)=5—1x is the equation of a straight line for this problem.

A
> <— b =5 is y-intercept
4__
Mx)
34
27T <«—— slope m=-1
1+
! | NN >
o 1 213 4 5 x
Xx—a x xta
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General features of 1-D Laplace’s Equation V¥ (x)=0 and potential V' (x):

1. From above one-dimensional case V(x) = b+ mx (general solution = straight line eqn.)

we can see that:

V(x) is the average of V(x+a) and V(x—a) ie. V(x):%{V(x%ra)JrV(x—a)}

= Laplace’s Equation is a kind of averaging instruction

The solutions of V(x) are as “boring” as possible, but fit the endpoints (boundary conditions)
properly.
This may be “obvious” in one-dimension, but it is also true / also holds in 2-D and 3-D cases of

VI (F)=0.

2. V*V(F) tolerates / allows NO local maxima or minima — extrema must occur at endpoints

ie. VZV(F ) = 0 requires the second spatial derivative(s) of V (;7 ) to be zero.
- Not a proof, because e.g. 3 fens(x) where the second derivative vanishes other than at

endpoints - e.g. f(x)=x" (has a minimum at x = 0).

Laplace’s Equation in Two Dimensions (in Rectangular/Cartesian Coordinates)

oV oV
+ =

2 8y2 0

If V=V(x,y)then V¥ =0 =

n.b. now have partial derivatives of V(7).

o> o . , o :
Because V¥V =0= {? tos V(x,y) now contains partial derivatives, the general solution
X y
does not contain just two arbitrary constants or any finite number - 3 an infinite number of
possible solutions (in general)

— the most general solution is a linear combination of harmonic functions (sine and cosine
functions of x and y in rectangular coordinates and other functions (Bessel Functions) in
cylindrical coordinates).

Nevertheless, V' (x, y) will still wind up being the average value of V around a point (x, y)

within a circle of radius R centered on the point (x, y).
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The Method of Relaxation - Iterative Computer Algorithm for Finding V (x, y):

ewy

circle C of
radius R
centered
on (x,y)

- Start with V(x, y) as specified on boundary (fixed)

- Choose reasonable “interpolated” values of ¥ (x, ) (from boundary) on interior (x,y)

points away from the boundaries.
- 1% pass reassigns V (x,y) = average value at interior point (x,y) of its nearest

neighbors.
- o pass repeats this process . .

- 3" pass repeats this process . . .
- et ....

After few iterations, V' (x,y) of n"™ iteration settles down, e.g. when:

iteration n iteration n—1

AV (x,y)=V,(x,y)-V,. (x,y)| < tolerance

then QUIT iterating, ¥ (x,y) is determined after n™ iteration is “good enough”.

V (x, y) again will have no local maxima or minima — all extrema will occur on boundaries.
VZV(x, y) =0 has solution V' (x, y) which is the most featureless function — as smooth as

possible.
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Laplace’s Equation in Three Dimensions

Can’t draw this on 2-D sheet of paper (because now this is a 4 dimensional problem!), but:

V(x,y,z) =V (F)=average value of ¥ over a spherical surface of radius R centered on 7 .

1

(f) Vda

sphere at T
of radius R

Again V (7) will have no local maxima or minima

- all extrema must occur at boundaries of problem (see work-through proof in Griffiths, p. 114)
- The average potential produced by a collection of charges, averaged over a sphere of
radius R is equal to the value of the potential at the center of that sphere!

Boundary Conditions on the Potential V' (7)

Dirichlet Boundary Conditions on V' (7):

V(7) itself is specified (somewhere) on the boundary - i.e. the value of V() is specified

(somewhere) on the boundary.

Neumann Boundary Conditions on V(;7 ) :

The normal derivative of ¥ (7) is specified somewhere on the boundary - i.e.

?V(F )-ﬁ =-E* (17 ) is specified somewhere on the boundary.
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Unigueness Theorem(s):

Suppose we have two solutions of Laplace’s equation, V, (;7 ) and V, (77 ) , each satisfying the

same boundary condition(s), i.e. the potentials ¥; (7) and ¥, (7) are specified on the boundaries.

We assert that the two solutions can at most differ by a constant. (n.b. Only differences in the
scalar potential V' (17 ) are important / physically meaningful!)

Proof: Consider a closed region of space with volume v which is exterior to n charged

conducting surfaces Sj, S,, Ss. . . S, that are responsible for generating the potential V.
The volume v is bounded (outside) by the surface S.

Charged Conducting Surfaces

@@

Suppose we have two solutions ¥1(r) and V(r) both satisfying V?V (7)=0 i.e. V| (#)=0
and V?V, (7)=0 in the charge-free region(s) of the volume v.

closed region of
volume v, bounded
by enclosing surface S.

V1(r) and V(r) satisfy either Dirichlet boundary conditions or satisfy Neumann boundary
conditions @V(F )+ii on the surfaces S, S, Ss. .. S,. We also demand that V(r) be finite at r = oo

Let us define: V, (7)=V,(7)—V,(7)= difference in the two potential solutions at the point 7.

Since both V*V,(7)=0 and V*V,(7)=0 then:

(7)=V*(V,(F) =7, (¥)) = VW, (F) - V¥, (F) =0 Note that: V* (7)=V+(V¥' (7))
separately separately

The potentials V,_, , are uniquely specified on charged (equipotential) surfaces Si, S, S3, . . . Sy

in the volume v.

Now apply the divergence theorem to the quantity (VAﬁ VA) ; we also define: E N (;7 ) =-VV, (17 )

Iﬁ-(VﬁVA)dn [ (nw)di= [ V,(-E,)dd

S+ S+
Si+8,+83+...S, Si+8,+83+...S,
Volume integral
over enclosing Surface integral over
volume v ALL surfaces in v
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Then:

S (B (B (1 () [ 1 () [ 1 (B,

S+
S+8,+83+...S,

Recognizing that:

1. The conducting surfaces S, Sz, Ss, . . . S,, are equipotentials.
Thus: V, (7)=V,(F)—V,(7) (= a constant on surfaces S1, S5, s, . . . S,) must = 0 at/on those surfaces!!!

. The volume v is arbitrary, so let’s choose volume v — oo, and thus surface area § — oo as well.
3. J E,+dA = ®, = electric flux through /" surface.
s, i

4. V,(r— )=V, (r - o)-V,(r - ) (= constant on surface S — o) must =0

because V; (r —> )=V, (r > ).

VeV, VV, :—VS E\edAs—V) | EyedA; =V, | E edAg —...= V3" | E,+dAg

J ve(rvr)d | V[ Evdds -V | B I

all A‘;pace _O all space _0 L,—/ _0 L,—/ =0 L,—H/
o =@l =@ =@

Thus: [ V¥, V7,)dr=0

v
all space

=Vl sV,
K_J%

However, using the identity 6-( v, ﬁVA) =V, (VZVA ) + (ﬁVA )2

Then: j 2 j VWdr+ j (V,) dr=0

all vpace all space all vpace

= | (VVA) de= [ (VW,+V,)dz=0
all :pace mathezn(i)afically all :pace
can be

The only way IV (?VA)2 dr =0 isiff (i.e. if and only if) the integrand (W/A (;7)) :(VV (7 )V, (7 )) 0.

mathematically
>0

If (W, (7)) =(V7, (7)V7, (7)) = 0, then: V¥, (F) itself must be =0
A(7)A

(ze A()

If VV,(7)=0 forall points 7 in volume v, then ¥, (#) = (same) constant at all points in

(F)=0= A(F)= O)fora_llpoints (7) in volume v.

volume v. .. V,(7)=V,(F)—V,(7)= constant at all points in volume .
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Dirichlet Boundary Conditions (7 specified on surfaces Sy, S2, Ss, . . ., S»)

If Vi(r) and V,(r) are specified on the surfaces Si, S», Ss, . . ., S, in the volume v enclosed by
surface S (Dirichlet boundary conditions), then: ¥, (7)=V,(7)-V,(7)=0

(i.e. the problem is over-determined).

must = 0!

. ¥, (7) =0 throughout the volume v and V,(#) =V, (7) throughout the volume v.

i.e. the two solutions V;(r) and V,(r) for VzV(F ) =0 are identical — there is only one unique solution.

Neumann Boundary Conditions ( £+ specified on surfaces S1, S5, S3, . . ., Sy)

If VV,eii =—E" and VV,i =—E;, are specified on the surfaces Sy, S5, S3, . . ., S, in the volume v
enclosed by surface S (Neumann boundary conditions), then V¥, (F)= vV, (F)- vV, (F)=0 at
all points in volume v and V¥, i = 0.

Then V, (7)=V,(F)—V,(7)= constant, but is not necessarily = 0 !!!

Here, solutions V;(r) and V,(r) can differ, but only by a constant V.
eg. V,(F)=V,(F)+V, = problem is NOT over-determined for V(7).

(E(F) is over-determined / unique, but not ¥ (7)).

Physical Example:

The Parallel Plate Capacitor: £ = AV/d =100 Vim + 100V i
E d=1m
ov 4
or: E=AVId=100 V/ m 15007 ¥
E d=1m
+400 V 'T
AV =100V in both cases — thus E-field is same/identical in both cases!
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If we instead specify the charge densit(ies) p(r) within the volume v (see figure below), then we

also have a uniqueness theorem for the electric field associated with Poisson’s equation
(ﬁ-E‘(F) =-VV(F)= p(r)/gu) :

closed region of
volume v, bounded

..... 1 by enclosing surface S.

onducting Surfaces
'\ /I S /, == \\‘

x>

Suppose there are two electric fields E, (7) and E, (7), both satisfying all of the boundary

conditions of this problem. Both obey Gauss’ law in differential and integral form everywhere
within the volume v:

~ 1 ~ 1
_ encl . _ encl
$  Eeda=—0"" and: § E,eda=—Q
i”’conducting 80 i/hcanducting gU
surface, S; surface, S;

At the outer boundary (enclosing surface S) we also have:

I _ 1 encl . o _ 1 encl
ISEI-da—g— and: jSEz-da_g—Q

tot tot
o o

We define the difference in electric fields: E, (7) = E, (¥)— E, (¥) which, in the region between
the conductors, obeys V+E, (7)=V+E, (7)-V+E, (7) = p(r)/¢, - p(r)/e, =0, and obeys
1
0

Jii EA da = Li El oda — L, E2 eda = g_ Qencl _gLOQiencz _

o

over each boundary surface S..

Even though we do not know how the charge Q; on the i conducing surface S; is distributed,
we do know that each surface S; is an equipotential, hence the scalar potential V, =V, —V, on

each surface is at least a constant on each surface S; (n.b. V, may not necessarily be = 0, since in

general V, may not in general be equal to V| on each/every surface ;).

10 ©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, [llinois
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Using Griffith’s product rule # 5: ﬁ-(fA) = f(%-gl) + Zl-(@f) , then:

Vo(V,E, )=, W RNA
However, in the region between conductors, we have shown (above) that VeE N (17 ) =0,

and E, =-VV,, hence: ?-(VAEA) = EA-(ﬁVA) =—E+E, =—E..
If we integrate this relation over the entire volume v (with associated enclosing surface S):
[Vo(ViEy)dz=¢ V.E,edd=~[ Eidz

Note that the surface integral covers all boundaries of the region in question — the enclosing outer
surface S and all of the S; inner surfaces associated with the i conductors. Since V is a constant

on each surface, it can be pulled outside of the surface integral (n.b. if the outer surface S is at
infinity, then for localized sources of charge, V, (r = oo) =0). Thus:

Eyedi =—[ E}dz

AJans
But since we have shown above that L E, +da = 0 for each surface S;, then (]5 s E, +di=0.
Therefore: j E.dr=0. Note that the integrand E; (7 )= E, (¥ )}E, (7) is always non-negative.

Hence, in general, the only way that this integral can vanish is if E, (¥)=E, (¥)—E, (¥)=0

everywhere, thus, we pust have E, (F)= E, (7).

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, [llinois 11
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Solving Laplace’s Equation (V' (7)=0) in 3-D, 2-D and 1-D Situations

In general, when solving the potential V(F ) problems in 3 (or less) dimensions, first note the

symmetries associated with the problem. Then, if you have:

Rectangular Solve Rectangular
Cylindrical Symmetry = Problem Cylindrical Coordinates
Spherical Using Spherical

In 2-D and 3-D problems, the general solutions to V>V (17 ) =0 are the harmonic functions (an oo-

series solution, in principle) e.g. of sines and cosines, Bessel functions, or Legendre
Polynomials and/or Spherical Harmonics.

The boundary conditions / symmetries will select a subset of the co-solutions.

We will now work through derivations of finding solutions to Laplace’s Equations in
3-dimensions in rectangular (i.e. Cartesian) coordinates, cylindrical coordinates, and spherical
coordinates. We will also use / show the method of separation of variables.

Laplace’s Equation V*V(x,y,z)=0and Potential Problems with Rectangular Symmetry

(Rectangular / Cartesian coordinates)

In Three Dimensions: Solve Laplace’s equation in rectangular / Cartesian coordinates:

or ot & oV oV o
V7 (x, v, —t—+—|V(x,y,z)= + + =0
(x Y Z) (axz 8y2 622} (x Y Z) ox? 6y2 0z*

The solutions of V?V =0 in rectangular coordinates are known as harmonic functions (i.e. sines
and cosines) (— Fourier Series Solutions).

It is usually (but not always) possible to find a solution to the Laplace Equation, V°/ =0 which
also satisfies the boundary conditions, via separation of variables technique, i.e. try a product
solution of the form:

V(x,y,z)zX(x)Y Z z

where: X (%)
Y (y) | are functions only of respectively.
Z(z)

2 2
Then: VzV(x,y’Z)zoja Vgxazya z) o( xzy, oV (x,y,2)
< oy oz’

But: V' (x,y,2)=X(x)Y(y)Z(z2)

12 ©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, [llinois
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Thus: X (x)Y(y)Z(z2) . X (x)Y(y)Z(z2) . ’X (x)Y(y)Z(z)
- ox’ oy’ oz’

—r(n)z( 720

N
+
o<
—~~
=
N—"
N
—~~
N
N—
+
o
—~~
=
N—
h<
—~~
<
N

1 0°X(x) 1 Y(y) 1 9°Z(z2)

But: = =0 ie. C+C,+(C,;=0
= X(x) o Y(y) o Z(z) o e BT TS
fen(x) only fen(y) only fen(z) only

independent of'y, z independent of x, z independent of x, y

=G =G, Cs
(H True for all points (x, y, z)

in volume v of problem.

The only way the above equation can be true for all points (x, y, z) in volume v is if:

( ) 2
L 0 ng) = constant C, = d ng) -C X (x)=0| #1
X(x) ox dx
1 &Y (y) d*Y (y)
— = constant C, = -GY(y)=0| #2
17 (v) o ’ 5 G0
2 2
L 2 ZEZ) = constant C,; = dZ—SZ)—CSZ(Z) =0 | #3
kZ(Z) 0z dz

*— Note fotal derivatives now!!!
Subject to the constraint: C; + C; + C3=0

Can now solve 3 ORDINARY 1-D differential equations, #1-3, which are subject to C; + C; + C3 =0,
PLUS the specific Dirichlet / Neumann boundary conditions for the problem on either V (x, y, z)

or §V(x, y,z)-ﬁ at surfaces for this 3-D problem.

Essentially, we have replaced the 3-D problem with three 1-D problems, and the constraint:
C 1 + C2 + C3 = 0.

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, [llinois 13
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* If one has a 2-D rectangular coordinate problem (VZV(x, y)= O), then: V (x, y) = X(x)Y(y) (only).

( 2 2
1 d)(gx):Cl:> ngx)—ClX(x)zo
X(x) dx dx
< 2 >
1 d Y(y) d*Y(y)
—_— =C -CY =0
Y(y) dv 2 = & Y ()

\
Subject to the constraint: C; + C; =0, ie. C;=-C,.
Plus BC’s: either on ¥ (x, y) or VV(x, y)+ii for the 2-D problem.

* If one has a 1-D rectangular coordinate problem (VZV(x) = 0) , then: V(x) = X(x) (only).

2 2 2

V) o o X)L LX)
dx dx X(x) dx

X ()

o =0 = X(x)=V(x)=ax+b is the 1-D general solution.
X
For 1-D problem (VZV(x) = O) , only need to solve one ordinary differential equation subject to

the constraint C; = 0 and BC’s on either }V(x) or dl;(x) .
X

14 ©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, [llinois
2005 - 2008. All rights reserved.



UIUC Physics 435 EM Fields & Sources I Fall Semester, 2007  Lecture Notes 7 Prof. Steven Errede

The General Solution ¥ (x,y,z) =X (x)Y(y)Z(z) for V¥V (x,y,z)=0
in Rectanqular Coordinates

Since we have the constraint C; + C, + C; = 0, at least one of the C;’s (i = 1, 2 or 3) must be less
than zero.

Let us “choose” C, =-a’, C,=-p°, C, =y’

Then: C1+C2+C3 =0
_a2_ﬂ2+72:0 or: a2+ﬂ2:72

The boundary conditions on the surfaces will define & and /£, and hence define .

IMPORTANT NOTE:

The geometry (x —y — z) of the problem and the boundary conditions dictate whether:

C;>0o0r(C; <0
C,>0orC,<0
C;>00rC;<0

i.e. have sine / cosine type solutions vs. sinh / cosh (or e, e ") type solutions for x, y, z.
Then the General Solution is (for above choice of C, =—-a’, C, =-5°, C, =y?):

V(x,y,z)= > 4,, sin (a,x) sin (8,»)sinh (7,,2) so we also have the additional series solutions:

m,n=0 could be could be could be
cos cos cosh = ‘7‘3 +ﬁ”21

+ i B, cos(anx)cos(ﬁmy) sinh (7,,,2)

m,n=0

+ i C,,sin(a,x)sin(S,y)cosh(,,z)
m,n=0 A —
+ i D, cos(a,x)cos (,Bmy) cosh (anz)
m,n=0 D —
=\a; + B,
1 X —X : 1 X —X
n.b.  cosh(x) :E(e +e ) sinh(x) =E(e —e )
: 1 ix —ix 1 ix —ix .
n.b. s1n(x)=5(e —e ) cos(x):z(e +e ) i=v-1
nb.  e" =cos(x)+isin(x) e ™ =cos(x)—isin(x)
n.b. e =cosh(x)+sinh(x) e =cosh(x) —sinh(x)

The BC’s and symmetries will determine which of the coefficients 4,,,, Byun, Cpn, Dinn = 0.
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We solve for the non-zero coefficients A,y By, C,y and D, by taking inner products.

i.e. we multiply ¥ (x,y,z) =Y (stuff ) by e.g. sin(a,x)sin(B,y) to project out the p-q"
component (i.e. we use the orthogonality properties of the individual terms in sin( ) and cos( )
Fourier Series.) and then integrate over the relevant intervals in x and y:

e.g.
[ ], 7 (x p)sina,x)sin(B, y)dxdy

= [ ["4] X 4, sin(a,x)sin(B, y)sinh(z,,2) *sin(e,x)sin( 8, )

m,n=0
’ =constant here

+ Z B, cos(a,x)cos(f,y)sinh(y,, z) *sin(a,x)sin( B, y)

m,n=0
? =constant here

+ Y. C,,sin(e,x)sin(B,y)cosh(y,,z) *sin(a,x)sin(3,»)

m,n=0
’ =constant here

+ z D, cos(a,x)cos(p,y)cosh(y,,z) *sin(a ,x)sin(B, y) | ¢ dxdy

m,n=0
=constant here

Fourier Functions: orthonormality properties of sin ( ) and cos ( ):

Yo . . =1 forn=
'[0 sin(a, x)sin(a,x)dx = =~ 5np(:0f§rr:¢i)

some
constant

J~: cos(anx)sin(apx)dx =0

: . =1 forn=p
Kroenecker ¢ -function: &, (=0 o p)

So all terms in above X’s vanish, except for a single term (in each sum) — that for the 4,, /B,
/Cpq Dy, coefficient!!! The BC’s will e.g. kill off 3 out of remaining 4 non-zero terms, thus only

one term survives. ..

Suppose only the 4,, coefficient survives. Its analytic form is now known for all integers p and q.

Then the analytic form of 3-D potential V' (x, v, z) is now known — it is an infinite series solution

of the form:
V(x,y,z)= Y, A,,sin(a,x)sin(B,y)sinh(7,,z)
m,n=0 —
=i
16 ©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, [llinois
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Laplace’s Equation V*V (p,¢,z)=0
And Potential Problems with Cylindrical Symmetry (Cylindrical Coordinates)

F=p+Zi=pp+z2 r=+p +2°

VYV (p,0,2)=0

:li( O_VJ 1oV oV _,
pop\" op) p’op’ o
oV 1eov 1 oV oV
- n — =0

ot pop P opt o

Again, we use the separation of variables technique:

V(p,9.2)=R(p)0(p)Z(z) = V¥ =0 = yields 3 ordinary differential equations:

/dzz
dzgz)‘k22(2)=0 = Z(z)=e"
< ()0 = ofp)-e
d2R<2p>+idR(p>+[k2-V—Z]R<p>=o
g dp p dp P

Note(s):

1.) kis arbitrary without imposing boundary conditions.
2.) k appears in both Z(z) and R(p) equations.

3.) In order for Q(p) to be single-valued (i.c. Q(¢)=0(@+27)), v must be an integer!

d’R dR 2
Let x=kp  Then: (zx) 1 (x) + l—V—2 R(x)=0 < Bessel’s Equation
dx x dx X
R(x)=x" Zajxj < Power Series Solution a=+tv
=0
a =—;a for j=0,1,2,3
2 = 4j(j+0!) 2j-2 J sl 2,0,

All odd powers of x; have vanishing coefficients, i.e. a1 = a3 = as = az+; =0

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, [llinois 17
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Coefficients ay; expressed in terms of ay:

| () T(arn) | &
“y _[22/j!1“(j+a+1)}a0 22U P (4 a+1)
1
2°T (a+1)

where a, = I'(x) =Gamma Function

There exist TWO solutions of the Radial Equation (i.e. Bessel’s Equation):

They are:

Bessel Functions of 1™ kind of order +v :

. B j 2j
( ] Z (f] These series converge for
‘= JjIr ]+v+1) 2

J,(x)= (gj ii(gjb all values of x.

j:()]!l"(]—v-i-l)

If v is not an integer (which is not the case here), then the J_, (x) form a pair of

n.b.< linearly independent solutions to the 2™ order Bessel’s Equation:
R(x)=4,J,(x)+A,J_ (x) for vinteger

However, note that if v =integer (which is the case for us here) then the Bessel functions
J,(x) and J_, (x) are NOT linearly independent!!

If v =m =integer (0, 1,2, 3, ...), then J_, (x)=(-1)"J, (x)

= We must find another linearly independent solution for R(x) when v = m =integer

It is “customary” to replace J +v(x) by just J, (x) and another function N, (x)
(called Neumann Functions)

Where: N, (x)=Bessel Function of 2™ kind = ol (x)co§(wr) ~J, (%)
sin (v )

NOTE: N, (x) is divergent (i.e singular) at x — 0
Complex Bessel Functions = Bessel Functions of 3" kind = Hankel Functions

Hankel Functions are complex linear combinations of J, (x) and N, (x) (Bessel Functions of 1*
and 2" kind respectively). They are defined as follows:

H"(x)=J,(x)+iN,(x) | The Hankel Functions H'"(x) and H'"(x) also form a

H (x)=J,(x)=iN,(x) [ fundamental set/basis of solutions to the Bessel equation.

v

18 ©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, [llinois
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The General Solution for V*¥(p,¢,z)=0 in Cylindrical Coordinates:

V(p.p.2)=R(p)0(0)Z(z)

cosh(kynz) is also allowed

V(p,p.z z J,, (k,,p)sinh(k,,z)[ 4, sin(mp)+B,, cos(mp)]

m,n=0

cosh(kmnz) is also allowed

/

+ i N, (k,,p)sinh(k,,z)[ C,, sin(mg)+D,, cos(mp)]

mn
m,n=0

Apply ALL boundary conditions on surfaces
(and also impose for » = oo,that V(r = o) = finite! {If » = oo is part of the problem!})

Note that sometimes we want V' (77 ) only inside some finite region of space, e.g. coaxial

capacitor — if so, then don’t have to worry about » = o solutions being finite — an example — the
Coaxial Capacitor:

End View of a Coaxial Capacitor

&

If the 7 =0 region is an excluded region in the problem, then must include (i.e. allow) the N, ( x)

solutions (singular at x=kp =0)!!!

If 7 =0 region is included in problem then ALL coefficients C,,
if V(p,p,z) is finite @ 7 =

=0 (for all m, n),

171 n

Using/imposing BC’s on surfaces, orthogonality conditions on sines, cosines, J, (x), N, (x),

14

etc. can find / determine values for all 4,,,,, Biun, Cin, D coefficients!!

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, [llinois 19
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2-Dimensional Circular Symmetry
Laplace’s Equation in (Circular) Cylindrical Coordinates

y
A

f Z AN
NI

V¥V (p.p)=0 V(p,(p)=R(,0)Q((P)<—_\

Again try product solution
Potential, ¥ (p,) is independent of z

(e.g. infinitely long coaxial cable)

1o ov) 1oV
VYV (p,0)=——| p— |+—=5=5=0
(o) pap(papj+p28¢2
Get:
2
Li[ dR(p)j: lz_LdQ(f’) LetC; =K
R(p)dp\" dp O(p) do
d ( dr(p d’Q(p
Then: p%(p%j—k%(p)zo and dqo(z )+k2Q((o):O

Require all solutions Q(¢) to be single-valued, i.e. Q(¢)=0(¢@+27)
because must have V (@) =V (¢ +27).

Solutions for O(¢) are of the form:
O(¢) = Acoske+ Bsinke
O(9)=0(@+2kr) requires k=integer=0, £ 1, + 2, £3, .. £ n ...

d dQ(;D) +n’0(9)=0 = O, (¢)=4,cos(np)+B,sin(ngp)
@

singular @ p — © singular @ p=0

d dR(p) 2 n n/ . _
p% P ip -n’R(p)=0=R, (p)=C,p"+D,p”"/ for n>1 (ie.n=1,2,3,..))

R,(p)=C,+D,In(p) for n=0 only

20 ©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, [llinois
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General Solution for V¥ (p,¢)=0_in Two Dimensions:
Cylindrical (a.k.a. Zonal) Harmonics

0

V(p,@)=V,+V,In(p)+ Z[anp” cos(ng)+b,p " cos(ngp)+c,p" sin(np)+d,p™ sin(ngp)]

n=1

Again, apply BC’s on all relevant surfaces, impose V(r - oo) = finite, etc. — these will dictate /

determine all coefficients, Vo, V1, a,, b, ¢, and d,,.

i.e. Solve for Vy, Vi, an, by, ¢, and d, by applying all boundary conditions, V(r - oo) = finite,

and using orthogonality conditions / properties:

a, ="A"I02”d¢J.0p” dp p V(p.p)p"cos(np) dA = pd pdop
b,="B" f:”dcofop" dp p V(p,@)p ™" cos(np)
¢, =”C"I:”d¢j:” dp p V(p.p)p"sin(np)

" n 2z Po -n _:
d,="D"["do|"dp p V(p.e)p " sin(np)
“A”, “B”, “C”, “D” are appropriate normalization factors (we will discuss later).

Laplace’s Equation V*V (r,$,¢)=0 In Spherical Coordinates

V:V(r,S,(p)

[\\Y

ASH

>/
N
>

O y V
[0/ ¢
X
VIV (r,9,0)=0
1L o ,0V 1 of( . oV 1 oV
S\ = |t —| sinf@— t—>—=-7> =0
r-or r ) r-sinf 06 00 ) r°sin” 6@ op

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, [llinois
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Again, try separation of variables / try product solution:

V(r,3,¢)=%r)P(0)Q(go) < of this form!!

P(0)0(p)11) U )0(0) d [SinedP(H)j+U(r)P(0) °0(p)

-0
dar’ r’sin@ do do r’sin’@  do’
Multiply by r*sin* 8/U (r)P(6)0(p):
2 2
# sin’ 6| — dUgr)+ 21. L_d sin@dp(e) — dQ(;D):O
U(r) dr r-sin@ P(H) do do Q((p) do

Sfunction of r+6 only Sfunction of ¢ only

Now: L 40(0)_ . _ d0(¢)

: = — " m’ =0
o) de T Ty )

Solutions are of the form: Q((p)

=" where m = integer =0, 1, 2, 3, ...

Since V(r,9,0)=V (r,9,0%2x) ie. O(p)=0(p+27)
Then: Q(¢) must be single-valued!

Thus:
2
2 sin? | — dUgr)+ 21. L_d sin@—dp(e) =+m’
U(r) dr r’sin@ P(6) do deo
2 2
1 dUgr)z_ 21‘ 1 d Sin6’auv(¢9) o
U(r) dr r sm@P(@)dQ do r*sin” @

multiply above equation by 7*:

2 2 2
P dU(r) 1 d[sinedp(e)}r m

- =— >0
U(r) d®  sin@ P(6)do 0 ) swra @ (@20)
function only of r function only of 6
must hold for any/all r and 6! —j
2 P 2
d Ugr)—%U(r):o and 4 sing PO, a-——|P(6)=0
dr r sin@ do do sin” @

let / define o= ¢((+1) |—where ¢ =integer=0, 1,2, 3, ...

(Trust me, © I know the answer . . .)

R 0w G lano TR e r0)=o

22
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Now let x =cos® x*=cos’@=1-sin’ 0
dx=dcosf =sin0do oosinf@=1-cos’@=1-x"

sin@ =+1-x*

< 2 2
Then: — i(“fl edp(e)j{z(ul)— - }P(@):O
sind d@\ sinfd db sin” @

Becomes: %((1 —x’ )d];_ix)] + {ﬁ (0+1)- (lliq—xz)] P(x)=0 <« Generalized Legendre' Equation

. . o d’U(r) L(L+1)
General Solutions of the radial equation, PR —U (r) =0 are of the form:
r r

U(r)=4r'+Br " (I + A + B) are determined by boundary conditions...

For m = 0 (azimuthally-symmetric problems — no ¢-dependence) the general solution for
azimuthally-symmetric potential V(r, (9) is of the form:

0

V(r,0)= Z[Aar” + Bkr*(”l)] P, (cos6)
AN

(=0
"ordinary" Legendre'
Polynomial of order (

The coefficients 4, and B, are determined by the boundary conditions
n.b. If 3 no charges atr=0,then B, =0 V / !!

Rodrigues’ Formula is useful for “ordinary” Legendre' Polynomials:

1 \d' ¢
B(X)E(z”mjdx‘ (x*-1)

The coefficients 4, and B, can be found / determined by evaluating ¥ (,6) on the conducting

surfaces in the problem, e.g. suppose we want to determine V(F ) inside a conducting sphere of

radius 7 = a. Then on the surface of the conducting sphere at radius » = a (an equipotential!):

V(r=a,0)= Z Aa'P,(cos@) =constant <  Legendre' Series

n.b. inside conducting sphere, e.g. there are no charges at » =0 B, =0V Y
In order to determine coefficients, take inner product:

ol

normalization
factor

J.”V(” =a,0) P, (cos8)sin 0do

0
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Orthogonality condition on P, (x)’s

. 2 5”:0f0rl'¢l

I BOREE=370 % s i for 1=
Kroenecker I -
Jd-function

n.b. The P, (cos 0) functions form a complete orthonormal basis set on the unit circle (» = 1)
for -1<cos@<lor: 0ZO0<r

“Ordinary” Legendre’ Polynomials P, (x) (x=cos8) defined on the interval —1<x<1:
P, (x) =1
F(x)

(x)

(=]

P,

(O8]
=
S
|
—
~—~—

S}

5x° —

U-)
=

)

(
=3
=—(35x" —30x" +3)
(

><

o0 | — OOI»—~ l\)l»-* |- =

63x° +70x° +15x)

Note: All P_,,, (x) functions are even functions of x: B_,,, (—x)=+F,_,,, (x)

All f’[:()dd( ) functions are odd functions of x: P_,, (—x)=-F_,, (x)
under x — —x reflection. Generally speaking, P, (—x)=(- 1) B (x).

If 3-D spherical coordinate problem DOES have azimuthal / ¢ -dependence, then m” # 0
in Associated Legendre' Equation (A.L.E.):

P 2
_Li[sined—@]{e(fﬂ)— .t }P(@):O x=cosd
sin@ dé do sin” @

Solutions to A.L.E. are Associated Legendre' Polynomials (A.L.P.’s)

moqm
Associated Legendre’ Polynomials: P (x)=(-1)" (1 —x’ ) 2 P, (x)
) dx" —

"ordinary"

Legendre'

Polynomial
m == integer #0
ie. m=%+1,£2, £3, ... but have a constraint on m !!! A <m<+L
ie. m=—0,—0+1,-0+2,..-2,-1, 0,+1,+2,0 -2,/ —-1,¢
24 ©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, [llinois

2005 - 2008. All rights reserved.



UIUC Physics 435 EM Fields & Sources I Fall Semester, 2007  Lecture Notes 7 Prof. Steven Errede

Aot () =(-1) (g P (1)

Orthogonality condition for P (x) for fixed m:

2 (€+m)!
(20+1) (L—m)! —=

Kroenecker
J-function

jP’” )P (x)dx =

We now define normalized P(0)Q(¢) functions known as Spherical Harmonics:

;;m(e,go)s\/(2£+1)(£_m)!3'"(cos9) o

4r (£+m)! “o®)

The Spherical Harmonics Y,, (6,¢) form a complete orthonormal set of basis “vectors™ on the

surface of the unit sphere (= 1)

Note that Y, (6,¢)=(-1)" Y;:@(p)\ complex conjugate

i.e.i— —i where i =+-1

Y,, (0,9) Normalization and Orthogonality Condition:

2z T, *
J.O d¢J. s eden’m' (0’ ¢) Y(/m (0’ (0) = 5[’45m'm

ie. [ 7dQY,, (0.0)Y,,(0.0)=5,05,, dQ =sin 0dOdy

© /
Completeness’ Relation: Z Z Y, Y,,(0,0)=56(cos@—cos8')5(p—¢')

(=0 m=—/ \/
DIRAC ¢ -functions
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Y, (9,(p) Spherical Harmonics

1 m *®
f =O {YOO :Tﬂ' Use Y/,—r11(9’¢):(_1) }/f;m(e’w)
in order to obtain Y, ,,Y, |, ¥, ;.Y ,.Y; | etc.
=1 Y,=- isin@e"”
7
3
Y, =—[——cos@ Note:
r
20+ 1) (1—m)! |
Y (6,0)= ( P" (cos@)e™
Am( (0) \/ 4r (€+m)![( )
4 1|15 . ; 20+1
YZZ=Z —”smzé’e” Y,,(6,0)= ( = )Q(COSG)
5 . ;
(=2 < YZI=—‘/gsm900$6’e‘”
Y, = i(écoszﬁ——J
\_ T\ 2
/YB=—1 2sin3 0e*’
4\N4r
(=3 Y32:l 195 Gin2 0cos e
< 4N 27
1|21 .
Y, =——,|—sin@(5cos> O -1)e”
= 2L i o(scos’0-1)
Y, = l(ECOSSH—ECOSHJ
\_ \2 2
etc
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General Solution for Laplace’s Equation VZV(r, e,go) in Spherical Polar Coordinates

0 +/
V(r0.0)=> D[ A +B, ", (6.0)
14

=0 m=—/

Coefficients 4, and B, are determined by / from Boundary Conditions on spherical surface(s)

If V=V (6,p) on surface (e.g. at r = a)

(i.e. no charge at r =0 in problem — B, =0V, )

+/

Then: V Hgo =Z A4,7%, H(p on surface (r = a).

(=0 m=—/{

And: 4,, = IO dQyY, (8,9)V (6,¢) on surface (r = a).

Note: V(0=0,0)= z (2i+1)Am
T

north
pole

0= 251;—1 N dQP, (cosO)V (6,p)

General Comments: The method of separation of variables used in Laplace’s equation V?V =0
in rectangular, cylindrical and spherical coordinates shows up again in Poisson’s Equation

VYV = _Lopee and also in the wave equation (valid for all classical wave phenomena)
g()
2 — 1 82lr// (Fyt) . . 1 P’ . .
\% 1//(r, t) + PR =0 and in Schrédinger’s wave equation Hy = Ey in Quantum

Mechanics problems. These equations will appear again and again, in one form or another for
E&M, Classical Mechanics, Quantum Mechanics courses as well as for Classical / Newtonian
Gravity problems...

For more detailed information e.g. on separation of variables and solutions to 3-D Wave
2

Equation V’y = _CLZFVZ/ in rectangular, cylindrical and spherical coordinates see Prof. S.

Errede lecture notes (Lecture IV — parts 1 & 2) on (sound) waves in 1-D, 2-D, 3D Physics 406
Acoustical Physics of Music website:

http://online.physics.uiuc.edu/courses/phys406/406 lectures.html

and also see/read his Fourier Analysis Lectures on this website, if interested.
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