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LECTURE NOTES 7 
 

LAPLACE’S EQUATION 
 
     As we have seen in previous lectures, very often the primary task in an electrostatics problem 
is e.g. to determine the electric field ( )E r

G G  of a given stationary/static charge distribution  
– e.g. via Coulomb’s Law: 
 
  Charge density 
       ( )rρ ′G    ẑ  
      Field Point  

   Source      r r′= −
G GG

r      P 
   Point(s) 
        S    rG  

    
 v′  
Volume        r′G  
element dτ ′    Ο        ŷ  
in volume v′  
   
  x̂  
 

( ) ( )2

ˆ1
4 o v

E r r dρ τ
πε ′

′ ′= ∫
G G Gr

r
  r r′= −

G GG
r  ˆ r r

r r
′−

= =
′−

G GG
G GG

r
r

r
 

     ( ) ( ) ( )2 2 2

p s p s p sr r x x y y z z′= − = − + − + −
G GG

r    
 

Oftentimes ( )rρ ′G  is complicated, and analytic calculation of ( )E r
G G  is painful / tedious (or just 

plain hard). (Numerical integration on a computer is likely faster/easier. . . ) 
 

Oftentimes it is easier to first calculate the potential ( )V rG , and then use ( ) ( )E r V r= −∇
G JKG G  

Here:   ( ) ( )1 1
4 o v

V r r dρ τ
πε ′

′ ′= ∫
G G

r
 

But even doing this integral analytically often can be very challenging. . .  
 

Furthermore, often in problems involving conductors, ( )rρ ′G  may not apriori (i.e. beforehand) 
be known!  Charge is free to move around, and often only the total free charge Qfree is controlled 
/ known in the problem. 
 
In such cases, it is usually better to recast the problem in DIFFERENTIAL form, using Poisson’s 
equation: 

 ( ) ( ) ( ) ( )2

o

r
E r V r V r

ρ
ε

∇ = −∇ ∇ = −∇ =
GJK G JK JKG G Gi i  

  Or:  ( ) ( )2     
o

r
V r

ρ
ε

∇ = −
G

G
 ⇐    Poisson’s Equation 
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Poisson’s equation, together with the boundary conditions associated with the value(s) allowed 
for ( )V rG  e.g. on various conducting surfaces, or at r = ∞, etc. enables one to uniquely determine 

( )V rG  (we’ll see how / why shortly. . .). 
 
The Poisson equation is an inhomogeneous second-order differential equation – its solution 
consists of a particular solution for the inhomogeneous term (RHS of Poisson’s Equation) plus 
the general solution for the homogeneous second-order differential equation: 
 

 ( )2 0V r∇ =
G

 ⇐    Laplace’s Equation 
 
commensurate with the boundary conditions for the specific problem at hand. 
 

Very often, in fact, we are interested in finding the potential ( )V rG  in a charge-free region, 

containing no electric charge, i.e. where ( )rρ ′G = 0. 
 

If ( )rρ ′G = 0, then ( )2 0V r∇ =
G  and the TRIVIAL solution is ( ) 0  ,V r r= ∀

G G  which is boring / 
useless! 
 

We seek physically meaningful / non-trivial solutions ( ) 0V r ≠
G  that satisfy ( )2 0V r∇ =

G  and the 

boundary conditions on ( )V rG  for a given physical problem. 
 
 
Now, before we go any further on this discussion, let’s back up a bit and take a (very) broad 
generalized MATHEMATICAL view (or approach) to find ( )V rG . 
 
First, let’s simplify the discussion, by talking about one-dimensional problems:   
 

If ( ) 0xρ = , Laplace’s Equation in one-dimension becomes (in rectangular/Cartesian 
coordinates): 

( )2 0V r∇ =
G  ⇒   

( )2

2 0
d V x

dx
=    ⇐   Note the total (not partial) derivative with regards to x. 

 
Integrating this equation (both sides) once, we have: 
 

( ) ( ) ( )2
st

2 1  constant of integration
d V x dV x dV xd dVdx dx d dx m

d x dx dx dx dx
⎛ ⎞ ⎛ ⎞= = = = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
∫ ∫ ∫ ∫  

Then: ( )dV x
dx

dx∫ mdx m dx= =∫ ∫  

Or:      ( ) ( ) nd    2  constant of integrationdV x V x mx b= = + ←∫  
 

So: ( )V x b mx= +   (equation for a straight line) is the general solution for ( )2

2 0.
d V x

dx
=  

   y-intercept   slope 
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   Depending on the boundary conditions for the problem, e.g. suppose ( )5 0V x = = Volts and 
( 1) 4V x = = Volts, then together, these two boundary conditions uniquely specify what b and m 

must be – we have two equations, and two unknowns (m & b) – solve simultaneously: 
 

           ( )V x b mx= +   ← equation for a straight line 
y-intercept   slope 
 

( )5 0 5           5V x b m b m= = = + → = −  

( )1 4 1            4 5 1 4V x b m m m m= = = + → = − + = −  

      ( )    5 1V x x∴ = −  or:  1m = −  and 5.b =  

  ( ) 5 1V x x= − is the equation of a straight line for this problem. 
 
 

5       5b =  is y-intercept 
 

4 
   V(x) 

3 
 

2         slope 1m = −  
 

1 
 

  0       1         2          3         4         5                       x 
          x−a  x  x+a 
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General features of 1-D Laplace’s Equation ( )2 0V x∇ =  and potential ( ) :V x  
 

1.  From above one-dimensional case ( )V x b mx= +  (general solution = straight line eqn.)  
     we can see that: 
 

     ( )V x is the average of ( )V x a+  and  ( )V x a−    i.e. ( ) ( ) ( ){ }1
2V x V x a V x a= + + −  

 
⇒Laplace’s Equation is a kind of averaging instruction  
 

 The solutions of ( )V x  are as “boring” as possible, but fit the endpoints (boundary conditions) 
properly. 
 
This may be “obvious” in one-dimension, but it is also true / also holds in 2-D and 3-D cases of 

( )2 0V r∇ =
G . 

 

2.  ( )2V r∇
G  tolerates / allows NO local maxima or minima – extrema must occur at endpoints  

  i.e. ( )2 0V r∇ =
G  requires the second spatial derivative(s) of ( )V rG to be zero. 

- Not a proof, because e.g. ( )  fcns x∃  where the second derivative vanishes other than at 

endpoints - e.g. ( ) 4f x x=  (has a minimum at x = 0). 
 
Laplace’s Equation in Two Dimensions (in Rectangular/Cartesian Coordinates) 

 

If  ( ),V V x y=  then  
2 2

2
2 20      0V VV

x y
∂ ∂

∇ = ⇒ + =
∂ ∂

 

 
  n.b. now have partial derivatives of ( )V rG . 

Because ( )
2 2

2
2 20 ,V V x y

x y
⎛ ⎞∂ ∂

∇ = = +⎜ ⎟∂ ∂⎝ ⎠
 now contains partial derivatives, the general solution 

does not contain just two arbitrary constants or any finite number - ∃  an infinite number of 
possible solutions (in general)  
 
– the most general solution is a linear combination of harmonic functions (sine and cosine 
functions of x and y in rectangular coordinates and other functions (Bessel Functions) in 
cylindrical coordinates). 
 

Nevertheless, ( ),V x y  will still wind up being the average value of V around a point ( ),x y  

within a circle of radius R centered on the point ( ),x y . 
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The Method of Relaxation - Iterative Computer Algorithm for Finding ( ),V x y : 
 
 

( ) ( )
circle C of
radius R
centered
on (x,y)

1,
2

V x y V r dl
Rπ

= ∫
Gv  

 
 
 
 
 
 
 
 
 
 

- Start with ( ),V x y as specified on boundary (fixed) 

- Choose reasonable “interpolated” values of ( ),V x y (from boundary) on interior ( ),x y  
points away from the boundaries. 

- 1st pass reassigns ( ),V x y  = average value at interior point ( ),x y  of its nearest 
neighbors. 

- 2nd pass repeats this process . . 
- 3rd pass repeats this process . . .  
- etc. …. 

 

After few iterations, ( ),V x y  of nth iteration settles down, e.g. when:  
 

( ) ( ) ( )
  1

1, , ,   
iteration n iteration n

n nV x y V x y V x y
−

−Δ = − ≤

���� 
����

 tolerance 

 

then QUIT iterating, ( ),V x y  is determined after nth iteration is “good enough”. 
 

( ),V x y again will have no local maxima or minima – all extrema will occur on boundaries.   

( )2 , 0V x y∇ =  has solution ( ),V x y  which is the most featureless function – as smooth as 
possible. 
 
 
 
 
 
 
 
 



UIUC Physics 435 EM Fields & Sources I         Fall Semester, 2007       Lecture Notes  7        Prof. Steven Errede 
 

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005 - 2008. All rights reserved. 

6 

Laplace’s Equation in Three Dimensions 
 
Can’t draw this on 2-D sheet of paper (because now this is a 4 dimensional problem!), but: 
 

( ) ( ), ,V x y z V r= =
G average value of V over a spherical surface of radius R centered on rG . 

 

i.e. ( ) 2
sphere at r 
of radius R

1
4

V r Vda
Rπ

= ∫ G

G v  

 

Again ( )V rG  will have no local maxima or minima  
- all extrema must occur at boundaries of problem (see work-through proof in Griffiths, p. 114) 
- The average potential produced by a collection of charges, averaged over a sphere of 

radius R is equal to the value of the potential at the center of that sphere! 
 
 

Boundary Conditions on the Potential ( )V rG  
 
Dirichlet Boundary Conditions on ( )V rG : 

( )V rG  itself is specified (somewhere) on the boundary - i.e. the value of ( )V rG  is specified 
(somewhere) on the boundary. 
 
Neumann Boundary Conditions on ( )V rG : 

The normal derivative of ( )V rG  is specified somewhere on the boundary - i.e. 

( ) ( )ˆV r n E r⊥∇ = −
JK G Gi  is specified somewhere on the boundary. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



UIUC Physics 435 EM Fields & Sources I         Fall Semester, 2007       Lecture Notes  7        Prof. Steven Errede 
 

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005 - 2008. All rights reserved. 

7

Uniqueness Theorem(s): 
 

Suppose we have two solutions of Laplace’s equation, ( ) ( )1 2 and V r V rG G , each satisfying the 

same boundary condition(s), i.e. the potentials ( ) ( )1 2 and V r V rG G are specified on the boundaries. 
We assert that the two solutions can at most differ by a constant.  (n.b. Only differences in the 
scalar potential ( )V rG  are important / physically meaningful!) 
 
Proof: Consider a closed region of space with volume v  which is exterior to n charged 
conducting surfaces S1, S2, S3. . . Sn that are responsible for generating the potential V.   
The volume v  is bounded (outside) by the surface S. 
 
 
   Charged Conducting Surfaces   closed region of 
  S1       volume v , bounded 
         by enclosing surface S. 
    S2  S3 
 
     S4  , v S  
 
 
 
Suppose we have two solutions V1(r) and V2(r) both satisfying ( )2 0V r∇ =

G  i.e. ( )2
1 0V r∇ =
G   

and ( )2
2 0V r∇ =
G  in the charge-free region(s) of the volume .v  

 
V1(r) and V2(r) satisfy either Dirichlet boundary conditions or satisfy Neumann boundary 
conditions ( ) ˆV r n∇

G G i  on the surfaces S1, S2, S3. . . Sn.  We also demand that V(r) be finite at r = ∞. 
 

Let us define: ( ) ( ) ( )1 2V r V r V rΔ ≡ − =
G G G difference in the two potential solutions at the point .rG  

 

Since both ( )2
1 0V r∇ =
G  and ( )2

2 0V r∇ =
G  then: 

 

          ( ) ( ) ( )( ) ( ) ( )2 2 2 2
1 2 1 2

     0      0

0
separately separately

V r V r V r V r V rΔ

= =

∇ = ∇ − = ∇ −∇ =
G G G G G

��	�
 ��	�
    Note that: ( ) ( )( )2V r V r∇ =∇ ∇
JK JKG Gi  

 

The potentials 1,2iV =  are uniquely specified on charged (equipotential) surfaces S1, S2, S3, . . . Sn  
in the volume v . 
 

Now apply the divergence theorem to the quantity ( )V VΔ Δ∇
G

; we also define: ( ) ( )E r V rΔ Δ≡ −∇
G GG G  

( ) ( ) ( )
1 2 3 1 2 3

                    
... ...n n

v S S
S S S S S S S S

V V d V V dA V E dAτΔ Δ Δ Δ Δ Δ
+ +

+ + + + + +

∇ ∇ = ∇ = −∫ ∫ ∫
G GG G JK G

i i i  

Volume integral          
over enclosing  Surface integral over       
volume v   ALL surfaces in v  
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Then: 

( ) ( ) ( ) ( ) ( )1 2

1 2
1 2 3

          
...

...
n

n
n

S S S S
S S S S S

S S S S

V E dA V E dA V E dA V E dA V E dAΔ Δ Δ Δ Δ Δ Δ Δ Δ Δ
+

+ + +

− = − − − − −∫ ∫ ∫ ∫ ∫
G G G G GG G G G G

i i i i i  

 
Recognizing that: 
 
1. The conducting surfaces S1, S2, S3, . . . Sn, are equipotentials.   

Thus: ( ) ( ) ( )1 2V r V r V rΔ = −
G G G (= a constant on surfaces S1, S2, S3, . . . Sn) must = 0 at/on those surfaces!!! 

2. The volume v  is arbitrary, so let’s choose volume v  → ∞, and thus surface area S → ∞ as well. 
3. 

i
i

i ES
E dAΔ = Φ∫

GG
i  = electric flux through ith surface. 

4. ( ) ( ) ( )1 2V r V r V rΔ →∞ = →∞ − →∞  (= constant on surface S → ∞) must = 0  

   because ( ) ( )1 2 .V r V r→∞ = →∞  
 

( ) N N N N
1 2

1 2

1 2

1 2

           0 0 0 0
  

   
 

   ... n

n

n

S S Sn
E E ES

E

SS SS
S S S S

v S S S S
all space all space

V V d V E dA V E dA V E dA V E dAτΔ Δ Δ Δ Δ Δ Δ Δ Δ Δ

= = = =

=Φ =Φ =Φ
=Φ

∴ ∇ ∇ = − − − − −∫ ∫ ∫ ∫ ∫
G G G GG G G G G G

i i i i i
��	�
 ��	�
 ��	�
���	��


 

Thus: ( )
      

 

0
v

all space

V V dτΔ Δ∇ ∇ =∫
G G
i  

However, using the identity ( ) ( ) ( )22

V V

V V V V V

Δ Δ=∇ ∇

Δ Δ Δ Δ Δ∇ ∇ = ∇ + ∇

JK JK
i
��JK JK JK

i  
 

Then: ( ) ( )2

      
 
v

all space

V V d V VτΔ Δ Δ Δ∇ ∇ = ∇∫
JK JK
i ( )2

            
  0

 0
v v

all space all space

d V dτ τΔ

=

+ ∇ =∫ ∫
JK

��	�

 

          ( ) ( )2

            
  

        0

0
v v

mathematicallyall space all space

V d V V dτ τΔ Δ Δ

≥

= ∇ = ∇ ∇ =∫ ∫
JK JK JK

i
�	


 

     can be 

The only way ( )2

        0

0
V

mathematically

V dτΔ

≥

∇ =∫
JK
�	


  is iff (i.e. if and only if) the integrand ( )( ) ( ) ( )( )2
0V r V r V rΔ Δ Δ∇ = ∇ ∇ =

JK JK JKG G Gi .  

If ( )( ) ( ) ( )( )2
0V r V r V rΔ Δ Δ∇ = ∇ ∇ =

JK JK JKG G Gi , then: ( )V rΔ∇
JK G  itself must be = 0 

( ) ( ) ( )( ). .  0 0i e A r A r A r= ⇒ ≡
G G GG G Gi for all points ( )rG  in volume .v  

 

If  ( ) 0V rΔ∇ =
JK G  for all points rG  in volume v , then ( )V rΔ

G  = (same) constant at all points in 

volume .v    ( ) ( ) ( )1 2   V r V r V rΔ∴ = − =
G G G  constant at all points in volume .v  
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Dirichlet Boundary Conditions (V specified on surfaces S1, S2, S3, . . ., Sn) 
 

If V1(r) and V2(r) are specified on the surfaces S1, S2, S3, . . ., Sn in the volume v  enclosed by 
surface S (Dirichlet boundary conditions), then: ( ) ( ) ( )1 2 0V r V r V rΔ = − =

G G G    
(i.e. the problem is over-determined). 
              must = 0! 
 

( )   0V rΔ∴ =
G  throughout the volume v  and ( ) ( )1 2V r V r=

G G  throughout the volume .v  
 

i.e. the two solutions V1(r) and V2(r) for ( )2 0V r∇ =
G  are identical – there is only one unique solution. 

 

Neumann Boundary Conditions ( E⊥  specified on surfaces S1, S2, S3, . . ., Sn) 
 

If 1 1ˆV n E⊥∇ = −
JK G
i  and 2 2ˆV n E⊥∇ = −

JK G
i  are specified on the surfaces S1, S2, S3, . . ., Sn in the volume v  

enclosed by surface S (Neumann boundary conditions),  then ( ) ( ) ( )1 2 0V r V r V rΔ∇ = ∇ −∇ =
JK JK JKG G G  at 

all points in volume v  and ˆ 0.V nΔ∇ =
JK

i  
 

Then ( ) ( ) ( )1 2V r V r V rΔ = − =
G G G  constant, but is not necessarily = 0 !!! 

 
Here, solutions V1(r)  and V2(r)  can differ, but only by a constant Vo. 
 e.g. ( ) ( )1 2       oV r V r V= + ⇒

G G  problem is NOT over-determined for ( ).V rG  

( ( )E r
G G  is over-determined / unique, but not ( )V rG ). 

 
Physical Example: 
 
 
The Parallel Plate Capacitor: E = ΔV/d =100 V/m  + 100 V 
             E

G
          d = 1 m 

               0 V 
 
Or:    E = ΔV/d = 100 V/ m  +500 V 
              E

G
           d = 1 m 

        +400 V 
 

100 V VΔ =  in both cases – thus E-field is same/identical in both cases! 
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If we instead specify the charge densit(ies) ( )rρ within the volume v (see figure below), then we 
also have a uniqueness theorem for the electric field associated with Poisson’s equation 

( ) ( ) ( )( )2
oE r V r rρ ε∇ = −∇ =

G G G Gi .  
 
 
 
   Charged Conducting Surfaces   closed region of 
  Q1       volume v , bounded 
           S1      by enclosing surface S. 
        S2 Q2  Q3      S3 
 
     Q4       S4 , v S  
                      ( )rρ  specified 
 
 
Suppose there are two electric fields ( )1E r

G G  and ( )2E r
G G , both satisfying all of the boundary 

conditions of this problem. Both obey Gauss’ law in differential and integral form everywhere 
within the volume v: 
 

( ) ( )1 oE r rρ ε∇ =
G G Gi  and: ( ) ( )2 oE r rρ ε∇ =

G G Gi  
 

1

, 

1
th

i

encl
i

oi conducting
surface S

E da Q
ε

=∫
G
iv  and: 2

, 

1
th

i

encl
i

oi conducting
surface S

E da Q
ε

=∫
G
iv  

 
At the outer boundary (enclosing surface S) we also have: 
 

1
1 encl

totS
o

E da Q
ε

=∫
G
i  and: 2

1 encl
totS

o

E da Q
ε

=∫
G
i  

 
We define the difference in electric fields: ( ) ( ) ( )1 2E r E r E rΔ ≡ −

G G GG G G  which, in the region between 

the conductors, obeys ( ) ( ) ( ) ( ) ( )1 2 0o oE r E r E r r rρ ε ρ εΔ∇ = ∇ −∇ = − =
G G G G G GG G Gi i i , and obeys 

1 2
1 1 0

i i i

encl encl
i iS S S

o o

E da E da E da Q Q
ε εΔ = − = − =∫ ∫ ∫

G G G
i i i  over each boundary surface Si. 

 
     Even though we do not know how the charge Qi on the ith conducing surface Si is distributed, 
we do know that each surface Si is an equipotential, hence the scalar potential 1 2V V VΔ ≡ − on 
each surface is at least a constant on each surface Si (n.b. VΔ  may not necessarily be = 0, since in 
general 2V  may not in general be equal to 1V  on each/every surface Si). 
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Using Griffith’s product rule # 5: ( ) ( ) ( )fA f A A f∇ = ∇ + ∇
G G GG G G

i i i , then: 
 

 ( ) ( )V E V EΔ Δ Δ Δ∇ = ∇
G G G G
i i ( )E VΔ Δ+ ∇

G G
i  

 

However, in the region between conductors, we have shown (above) that ( ) 0E rΔ∇ =
G G Gi ,  

and E VΔ Δ≡ −∇
G G

, hence: ( ) ( ) 2V E E V E E EΔ Δ Δ Δ Δ Δ Δ∇ = ∇ = − = −
G G G G G G
i i i . 

 
If we integrate this relation over the entire volume v (with associated enclosing surface S): 
 

( ) 2

 v all S v
V E d V E da E dτ τΔ Δ Δ Δ Δ∇ = = −∫ ∫ ∫

G G G Gi iv  
 
Note that the surface integral covers all boundaries of the region in question – the enclosing outer 
surface S and all of the Si inner surfaces associated with the i conductors. Since VΔ is a constant 
on each surface, it can be pulled outside of the surface integral (n.b. if the outer surface S is at 
infinity, then for localized sources of charge, ( ) 0V rΔ = ∞ = ). Thus: 
 

2

 all S v
V E da E dτΔ Δ Δ= −∫ ∫

G Giv  
 

But since we have shown above that 0
iS
E daΔ =∫
G
i for each surface Si, then 

 
0

all S
E daΔ =∫
G Giv . 

Therefore: 2 0
v
E dτΔ =∫ . Note that the integrand ( ) ( ) ( )2E r E r E rΔ Δ Δ=

G GG G Gi  is always non-negative. 

Hence, in general, the only way that this integral can vanish is if ( ) ( ) ( )1 2 0E r E r E rΔ ≡ − =
G G GG G G  

everywhere, thus, we must have ( ) ( )1 2E r E r=
G GG G .  
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Solving Laplace’s Equation ( )( )2 0V r∇ =
G  in 3-D, 2-D and 1-D Situations 

 

In general, when solving the potential ( )V rG  problems in 3 (or less) dimensions, first note the 
symmetries associated with the problem.  Then, if you have: 
 
 Rectangular    Solve  Rectangular 
 Cylindrical   Symmetry     ⇒  Problem Cylindrical   Coordinates 
 Spherical    Using  Spherical 
 
In 2-D and 3-D problems, the general solutions to ( )2 0V r∇ =

G  are the harmonic functions (an ∞-
series solution, in principle)  e.g. of sines and cosines, Bessel functions, or Legendre 
Polynomials and/or Spherical Harmonics. 
 
The boundary conditions / symmetries will select a subset of the ∞-solutions. 
 
     We will now work through derivations of finding solutions to Laplace’s Equations in  
3-dimensions in rectangular (i.e. Cartesian) coordinates, cylindrical coordinates, and spherical 
coordinates.  We will also use / show the method of separation of variables. 
 
 
 

Laplace’s Equation ( )2 , , 0V x y z∇ = and Potential Problems with Rectangular Symmetry 
(Rectangular / Cartesian coordinates) 

 
In Three Dimensions: Solve Laplace’s equation in rectangular / Cartesian coordinates: 
 

( ) ( )
2 2 2 2 2 2

2
2 2 2 2 2 2, , , , 0V V VV x y z V x y z

x y z x y z
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂

∇ = + + = + + =⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 

 

The solutions of 2 0V∇ =  in rectangular coordinates are known as harmonic functions (i.e. sines 
and cosines) (→ Fourier Series Solutions). 
 

It is usually (but not always) possible to find a solution to the Laplace Equation, 2 0V∇ =  which 
also satisfies the boundary conditions, via separation of variables technique, i.e. try a product 
solution of the form: 
 

   ( ) ( ) ( ) ( ), ,V x y z X x Y y Z z=   
 
where:   X (x)     x 
  Y (y)   are functions only of  y respectively. 
  Z (z)     z 
 

Then: ( ) ( ) ( ) ( )2 2 2
2

2 2 2

, , , , , ,
, , 0 0

V x y z V x y z V x y z
V x y z

x y z
∂ ∂ ∂

∇ = ⇒ + + =
∂ ∂ ∂

 

 

 But: ( ) ( ) ( ) ( ), ,V x y z X x Y y Z z=  
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Thus:                ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2

2 2 2 0
X x Y y Z z X x Y y Z z X x Y y Z z

x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

 

           ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2

2 2 2 0
X x Y y Z z

Y y Z z X x Z z X x Y y
x y z

∂ ∂ ∂
= + + =

∂ ∂ ∂
 

 

Now divide both sides of the above equation by ( ) ( ) ( )X x Y y Z z : 
 

Then:       
( )

( )
( )

( )
( )

( )2 2 2

2 2 2

1 1 1 0
X x Y y Z z

X x x Y y y Z z z
∂ ∂ ∂

= + + =
∂ ∂ ∂

 

 

But:       
( )

( )
( )

( )
( )

( )

1 2

2 2 2

2 2 2

       fcn(x) only        fcn(y) only        fcn(z) only
independent of y, z independent of x, z independent of x, y
         = C            = C            = C

1 1 1X x Y y Z z
X x x Y y y Z z z

∂ ∂ ∂
= + +

∂ ∂ ∂���	��
 ���	��


3

0=
���	��


   i.e.   1 2 3 0C C C+ + =  

                True for all points (x, y, z) 
                 in volume v  of problem. 
 
The only way the above equation can be true for all points (x, y, z) in volume v  is if: 
 

( )
( ) ( ) ( )

2 2

1 12 2

1  constant C      0
X x d X x

C X x
X x x dx

∂
= ⇒ − =

∂
   #1 

( )
( ) ( ) ( )

2 2

2 22 2

1    constant C        0
Y y d Y y

C Y y
Y y y dy

∂
= ⇒ − =

∂
   #2 

( )
( ) ( ) ( )

2 2

3 32 2

1    constant C        0
Z z d Z z

C Z z
Z z z dz

∂
= ⇒ − =

∂
   #3 

Note total derivatives now!!! 
Subject to the constraint: C1 + C2 + C3 = 0 

 
Can now solve 3 ORDINARY 1-D differential equations, #1–3, which are subject to C1 + C2 + C3 = 0,  
PLUS the specific Dirichlet / Neumann boundary conditions for the problem on either V (x, y, z) 
or ( ) ˆ, ,V x y z n∇
JK

i  at surfaces for this 3-D problem.   
 
Essentially, we have replaced the 3-D problem with three 1-D problems, and the constraint:  
C1 + C2 + C3 = 0. 
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* If one has a 2-D rectangular coordinate problem ( )2 ( , ) 0V x y∇ = , then: V (x, y) = X(x)Y(y) (only). 
 

 
( )

( ) ( ) ( )
2 2

1 12 2

1  C      0
d X x d X x

C X x
X x dx dx

= ⇒ − =  

( )
( ) ( ) ( )

2 2

2 22 2

1    C        0
d Y y d Y y

C Y y
Y y dy dy

= ⇒ − =  

 
Subject to the constraint: C1 + C2 = 0,    i.e.   C1 = −C2. 
Plus BC’s: either on V (x, y) or ˆ( , )V x y n∇

JK
i  for the 2-D problem. 

 
* If one has a 1-D rectangular coordinate problem ( )( )2 0V x∇ = , then: V(x) = X(x) (only). 
 

 ( ) ( ) ( )2 2 2

12 2 2

10      0      0
( )

d V x d X x d X x
C

dx dx X x dx
= ⇒ = ⇒ = =  

 ( )2

2 0      ( ) ( )
d X x

X x V x ax b
dx

= ⇒ = = +  is the 1-D general solution. 
 

For 1-D problem ( )( )2 0V x∇ = , only need to solve one ordinary differential equation subject to 

the constraint C1 = 0 and BC’s on either V(x) or ( )dV x
dx

. 
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The General Solution ( ) ( ) ( ) ( ), ,V x y z X x Y y Z z=  for ( )2 , , 0V x y z∇ =  
in Rectangular Coordinates 

 
Since we have the constraint C1 + C2 + C3 = 0, at least one of the Ci’s (i = 1, 2 or 3) must be less 
than zero. 
 

Let us “choose” 2 2 2
1 2 3,  ,  C C Cα β γ= − = − =  

 
Then:   C1 + C2 + C3   = 0 
  2 2 2 0α β γ− − + =  or: 2 2 2α β γ+ =  
 
The boundary conditions on the surfaces will define and α β , and hence define .γ  
 
IMPORTANT NOTE:   
 

The geometry (x – y – z) of the problem and the boundary conditions dictate whether: 
 

C1 > 0 or C1 < 0 
C2 > 0 or C2 < 0 
C3 > 0 or C3 < 0 
 

i.e. have sine / cosine type solutions vs. sinh / cosh (or ,  x xe e− ) type solutions for x, y, z. 
 

Then the General Solution is (for above choice of 2 2 2
1 2 3,  ,  C C Cα β γ= − = − = ): 

( ) N ( ) N ( )N ( )
2 2

m,n=0 could be could be could be
    cos     cos   cosh

, , sin sin sinh

n m

mn n m mnV x y z A x y z
α β

α β γ
∞

= +

= ∑ �	
  so we also have the additional series solutions: 

       ( ) ( ) ( )
2 2

m,n=0

cos cos sinh

n m

mn n m mnB x y z
α β

α β γ
∞

= +

+ ∑ �	
  

                 ( ) ( ) ( )
2 2

m,n=0

sin sin cosh

n m

mn n m mnC x y z
α β

α β γ
∞

= +

+ ∑ �	
  

                 ( ) ( ) ( )
2 2

m,n=0

cos cos cosh

n m

mn n m mnD x y z
α β

α β γ
∞

= +

+ ∑ �	
  

 

 n.b. ( )1cosh( )
2

x xx e e−= +   ( )1sinh( )
2

x xx e e−= −  

 n.b. ( )1sin( )
2

ix ixx e e
i

−= −   ( )1cos( )
2

ix ixx e e−= +   1i ≡ −  

 n.b. cos( ) sin( )ixe x i x= +   cos( ) sin( )ixe x i x− = −  
 n.b. cosh( ) sinh( )xe x x= +  cosh( ) sinh( )xe x x− = −  
 
The BC’s and symmetries will determine which of the coefficients Amn, Bmn, Cmn, Dmn = 0. 
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We solve for the non-zero coefficients  Apq, Bpq, Cpq and Dpq by taking inner products. 
i.e. we multiply ( )( , , )V x y z stuff=∑  by e.g. sin( )sin( )p qx yα β  to project out the p-qth 
component (i.e. we use the orthogonality properties of the individual terms in sin( ) and cos( ) 
Fourier Series.) and then integrate over the relevant intervals in x and y: 
 
e.g.  

     
0 0

( , )sin( )sin( )o ox y

p qV x y x y dxdyα β∫ ∫  

 

0 0
, 0 constant here

, 0 constant here

sin( )sin( )sinh( )*sin( )sin( )

              cos( )cos( )sinh( )*sin( )sin( )

           

o ox y

mn n m mn p q
m n

mn n m mn p q
m n

A x y z x y

B x y z x y

α β γ α β

α β γ α β

∞

= =

∞

= =

⎧⎛ ⎞⎪⎜ ⎟= ⎨⎜ ⎟⎪⎝ ⎠⎩
⎛ ⎞
⎜ ⎟+
⎜ ⎟
⎝ ⎠

∑∫ ∫

∑

��	�


��	�


, 0 constant here

, 0 constant here

   sin( )sin( ) cosh( )*sin( )sin( )

              cos( ) cos( ) cosh( )*sin( )sin( )

mn n m mn p q
m n

mn n m mn p q
m n

C x y z x y

D x y z x y dxdy

α β γ α β

α β γ α β

∞

=
=

∞

= =

⎛ ⎞
⎜ ⎟+
⎜ ⎟
⎝ ⎠

⎫⎛ ⎞⎪⎜ ⎟+ ⎬⎜ ⎟⎪⎝ ⎠⎭

∑

∑

��	�


��	�


 

 
Fourier Functions: orthonormality properties of  sin (  ) and cos (  ): 
 

N ( )= 1  for n = p
0 for n  p0

  
sin( )sin( )ox

n p np
some

constant

x x dxα α δ = ≠=∫ ∼∼  

 ( ) ( )
0

cos sin 0ox

n px x dxα α =∫  

 
 Kroenecker δ -function:  ( )= 1  for n = p

0 for n  pnpδ = ≠  
 

 
So all terms in above Σ’s vanish, except for a single term (in each sum) – that for the Apq /Bpq 
/Cpq /Dpq coefficient!!! The BC’s will e.g. kill off  3 out of remaining 4 non-zero terms, thus only 
one term survives… 
 
Suppose only the Apq coefficient survives. Its analytic form is now known for all integers p and q. 
 
Then the analytic form of 3-D potential ( ), ,V x y z is now known – it is an infinite series solution 
of the form: 

( ) ( ) ( ) ( )
2 2

m,n=0

, , sin sin sinh

n m

mn n m mnV x y z A x y z
α β

α β γ
∞

= +

= ∑ �	
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Laplace’s Equation ( )2 , , 0V zρ ϕ∇ =  
And Potential Problems with Cylindrical Symmetry (Cylindrical Coordinates) 
 
  ẑ   rG   ˆ ˆr z zzρ ρρ= + = +

GG G  2 2r zρ= +  
   
        
      
               
           Ο    ŷ  ( )2 , , 0V zρ ϕ∇ =  

  ϕ           ρ   
2 2

2 2 2

1 1 0V V V
z

ρ
ρ ρ ρ ρ ϕ

⎛ ⎞∂ ∂ ∂ ∂
= + + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 

                      ϕ̂   
2 2 2

2 2 2 2

1 1 0V V V V
zρ ρ ρ ρ ϕ

∂ ∂ ∂ ∂
= + + + + =
∂ ∂ ∂ ∂

 

x̂        ρ̂  
 
Again, we use the separation of variables technique: 
 

( ) ( ) ( ) ( ) 2, ,   0 V z R Q Z z Vρ ϕ ρ ϕ= ⇒ ∇ = ⇒  yields 3 ordinary differential equations: 
 

  ( ) ( ) ( )
2

2
2 0      kzd Z z

k Z z Z z e
dz

±− = ⇒ =   

 ( ) ( ) ( )
2

2
2 0      id Q

Q Q e
d

νϕϕ
ν ϕ ϕ

ϕ
±+ = ⇒ =   

 ( ) ( ) ( )
2 2

2
2 2

1 0
d R dR

k R
d d

ρ ρ ν ρ
ρ ρ ρ ρ

⎛ ⎞
+ + − =⎜ ⎟

⎝ ⎠
   

 
Note(s): 
 
1.)  k is arbitrary without imposing boundary conditions. 
2.)  k appears in both Z(z) and R(ρ) equations. 
3.)  In order for Q(φ) to be single-valued  (i.e. ( ) ( )2Q Qϕ ϕ π= + ), ν must be an integer! 
 

Let x kp≡  Then: ( ) ( ) ( )
2 2

2 2

1 1 0      
d R x dR x

R x
dx x dx x

ν⎛ ⎞
+ + − = ⇐⎜ ⎟

⎝ ⎠
 Bessel’s Equation 

( )
0

j
j

j
R x x a xα

∞

=

= ⇐∑  Power Series Solution  α ν= ±  

( )2 2 2
1

4j ja a
j j α −≡ −

+
  for  j = 0, 1, 2, 3, . . . . 

 
All odd powers of xj have vanishing coefficients, i.e. a1 = a3 = a5 = a2j+1 = 0 
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Coefficients a2j expressed in terms of a0: 
 

( ) ( )
( )

( )
( ) ( )2 02 2

1 1 1
2 ! 1 2 ! 1

j j

j j ja a
j j j jα

α
α α+

⎡ ⎤− Γ + −
= =⎢ ⎥

Γ + + Γ + +⎢ ⎥⎣ ⎦
 

where  
( )0
1

2 1
a α α

=
Γ +

  ( )xΓ =Gamma Function 

 
There exist TWO solutions of the Radial Equation (i.e. Bessel’s Equation): 
 
They are: 
 
Bessel Functions of 1st kind, of order ν± : 

( ) ( )
( )

2

0

1
2 ! 1 2

j j

j

x xJ x
j j

ν

ν ν

∞

+
=

−⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟Γ + +⎝ ⎠ ⎝ ⎠
∑   These series converge for 

( ) ( )
( )

2

0

1
2 ! 1 2

j j

j

x xJ x
j j

ν

ν ν

− ∞

−
=

−⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟Γ − +⎝ ⎠ ⎝ ⎠
∑   all values of x. 

 

If ν is not an integer (which is not the case here), then the ( )J xν±  form a pair of  
n.b.  linearly independent solutions to the 2nd order Bessel’s Equation: 

( ) ( ) ( )R x A J x A J xν ν ν ν− −= +   for ν ≠ integer 
 
However, note that if ν = integer (which is the case for us here) then the Bessel functions 

( ) ( ) and J x J xν ν−  are NOT linearly independent!! 
 

If mν = = integer (0, 1, 2, 3, …), then ( ) ( ) ( )1 m
m mJ x J x− = −  

 

    ∴ ⇒  We must find another linearly independent solution for R(x) when mν = = integer 
 

It is “customary” to replace ( )J xν±  by just ( )J xν  and another function ( )N xν   
(called Neumann Functions)  

Where:  ( ) ( ) ( ) ( )
( )

nd cos
Bessel Function of 2  kind 

sin
J x J x

N x ν ν
ν

νπ
νπ

−−
= ≡  

NOTE:   ( )N xν  is divergent (i.e singular) at x → 0 
 
Complex Bessel Functions = Bessel Functions of 3rd kind = Hankel Functions 
 

Hankel Functions are complex linear combinations of ( )J xν  and ( )N xν  (Bessel Functions of 1st 
and 2nd kind respectively).  They are defined as follows: 
 

( ) ( ) ( ) ( )1H x J x iN xν ν ν≡ +  The Hankel Functions ( ) ( ) ( ) ( )1 2 and H x H xν ν  also form a 
( ) ( ) ( ) ( )2H x J x iN xν ν ν≡ −  fundamental set/basis of solutions to the Bessel equation. 
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The General Solution for ( )2 , , 0V zρ ϕ∇ =  in Cylindrical Coordinates: 
 

( ) ( ) ( ) ( ), ,V z R Q Z zρ ϕ ρ ϕ=  
 

      cosh(kmnz) is also allowed 

( ) ( ) ( ) ( ) ( )
, 0

, , sinh sin cosm mn mn mn mn
m n

V z J k k z A m B mρ ϕ ρ ϕ ϕ
∞

=

= +⎡ ⎤⎣ ⎦∑  

     cosh(kmnz) is also allowed 

                 ( ) ( ) ( ) ( )
, 0

sinh sin cosm mn mn mn mn
m n

N k k z C m D mρ ϕ ϕ
∞

=

+ +⎡ ⎤⎣ ⎦∑  

 
Apply ALL boundary conditions on surfaces  
(and also impose for r = ∞,that V(r = ∞) = finite!  {If r = ∞ is part of the problem!}) 
 

Note that sometimes we want ( )V rG  only inside some finite region of space, e.g. coaxial 
capacitor – if so, then don’t have to worry about r = ∞ solutions being finite – an example – the 
Coaxial Capacitor: 
 

       End View of a Coaxial Capacitor 
 
     b 
     

    a 
 
 
 

If the 0r =G  region is an excluded region in the problem, then must include (i.e. allow) the ( )N xν  
solutions (singular at 0x kρ= = )!!! 
 

If 0r =G  region is included in problem, then ALL coefficients 0mn mnC D= ≡  (for all m, n),  
if ( ), ,V zρ ϕ  is finite @ 0r =G . 
 

Using/imposing BC’s on surfaces, orthogonality conditions on sines, cosines, ( )J xν , ( )N xν , 
etc. can find / determine values for all Amn, Bmn, Cmn, Dmn coefficients!! 
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2-Dimensional Circular Symmetry 
Laplace’s Equation in (Circular) Cylindrical Coordinates 

 
     y 
 
 
        ρ  
          ϕ     x 
 
 
 
 

( )2 , 0V ρ ϕ∇ =     ( ) ( ) ( ),V R Qρ ϕ ρ ϕ=  
       Again try product solution 
Potential, ( ),V ρ ϕ  is independent of z 
(e.g. infinitely long coaxial cable) 
 

( )
2

2
2 2

1 1, 0V VV ρ ϕ ρ
ρ ρ ρ ρ ϕ

⎛ ⎞∂ ∂ ∂
∇ = + =⎜ ⎟∂ ∂ ∂⎝ ⎠

 

Get: 

 
( )

( )
( )

( )2

1 2

1dR d Qd C
R d d Q d

ρ ϕρ ρ
ρ ρ ρ ϕ ϕ

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
 Let C1 = k2 

Then: ( ) ( )2 0
dRd k R

d d
ρ

ρ ρ ρ
ρ ρ
⎛ ⎞

− =⎜ ⎟
⎝ ⎠

   and  ( ) ( )
2

2
2 0

d Q
k Q

d
ϕ

ϕ
ϕ

+ =   

 

Require all solutions ( )Q ϕ  to be single-valued, i.e. ( ) ( )2Q Qϕ ϕ π= +  

because must have ( ) ( )2V Vϕ ϕ π= + . 
 

Solutions for ( )Q ϕ  are of the form: 

 ( ) cos sinQ A k B kϕ ϕ ϕ= +  

( ) ( )2Q Q kϕ ϕ π= +  requires k = integer = 0, ±  1, ±  2, ± 3, …±  n … 

 ( ) ( ) ( ) ( ) ( )
2

2
2 0      cos sinn n n

d Q
n Q Q A n B n

d
ϕ

ϕ ϕ ϕ ϕ
ϕ

+ = ⇒ = +  

 
      singular @ ρ →∞    singular @ 0ρ =  

( ) ( ) ( )2 0     1n n
n n n

dRd n R R C D for n
d d

ρ
ρ ρ ρ ρ ρ ρ

ρ ρ
−⎛ ⎞

− = ⇒ = + ≥⎜ ⎟
⎝ ⎠

 (i.e. n = 1, 2, 3, . . .) 

           ( ) ( )    for    = 0 o o oR C D ln nρ ρ= + only 
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General Solution for ( )2 , 0V ρ ϕ∇ =  in Two Dimensions: 
Cylindrical (a.k.a. Zonal) Harmonics 

 

( ) ( ) ( ) ( ) ( ) ( )0 1
1

,  cos cos sin sinn n n n
n n n n

n
V V V ln a n b n c n d nρ ϕ ρ ρ ϕ ρ ϕ ρ ϕ ρ ϕ

∞
− −

=

⎡ ⎤= + + + + +⎣ ⎦∑  

Again, apply BC’s on all relevant surfaces, impose ( )V r →∞ = finite, etc. – these will dictate / 
determine all coefficients, V0, V1, an, bn, cn and dn. 
 

i.e. Solve for V0, V1, an, bn, cn and dn by applying all boundary conditions, ( )V r →∞ = finite, 
and using orthogonality conditions / properties: 
 

( ) ( )
2

0 0
" "     , coso n

na A d d V n
π ρ
ϕ ρ ρ ρ ϕ ρ ϕ= ∫ ∫    dA d dρ ρ ϕ=  

( ) ( )
2

0 0
" "     , coso n

nb B d d V n
π ρ
ϕ ρ ρ ρ ϕ ρ ϕ−= ∫ ∫  

( ) ( )
2

0 0
" "     , sino n

nc C d d V n
π ρ
ϕ ρ ρ ρ ϕ ρ ϕ= ∫ ∫  

( ) ( )
2

0 0
" "     , sino n

nd D d d V n
π ρ
ϕ ρ ρ ρ ϕ ρ ϕ−= ∫ ∫  

“A”, “B”, “C”, “D” are appropriate normalization factors (we will discuss later). 
 
 

Laplace’s Equation ( )2 , , 0V r ϑ ϕ∇ =  In Spherical Coordinates 
 
 ẑ   ( ), ,V V r ϑ ϕ=  
 
 
      ϕ̂   
             r̂  
  rG     
 θ    �θ     
      Ο            ŷ  
           
          ϕ       ϕ̂  
 
 
    x̂  
 

( )2 , , 0V r ϑ ϕ∇ =  
2

2
2 2 2 2 2

1 1 1sin 0
sin sin

V V Vr
r r r r r

θ
θ θ θ θ ϕ

∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
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Again, try separation of variables / try product solution: 

( ) ( ) ( ) ( ), ,       
U r

V r P Q
r

ϑ ϕ θ ϕ= ⇐ of this form!! 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2

2 2 2 2 2sin 0
sin sin

d U r U r Q dP U r P d QdP Q
dr r d d r d

ϕ θ θ ϕ
θ ϕ θ

θ θ θ θ ϕ
⎛ ⎞

+ + =⎜ ⎟
⎝ ⎠

 

 

Multiply by ( ) ( ) ( )2 2sin /r U r P Qθ θ ϕ : 
 

( )
( )

( )
( )

( )
( )2 2

2 2
2 2 2

      

1 1 1 1sin sin 0
sin

function of onlyfunction of r only

d U r dP d Qdr
U r dr r P d d Q d

ϕθ

θ ϕ
θ θ

θ θ θ θ ϕ ϕ
+

⎡ ⎤⎛ ⎞
+ + =⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦ ���	��
������������	�����������

 

 

Now:  
( )

( ) ( ) ( )
2 2

2 2
2 2

1        0
d Q d Q

m m Q
Q d d

ϕ ϕ
ϕ

ϕ ϕ ϕ
= − ⇒ + =  

 
 Solutions are of the form: ( ) imQ e ϕϕ ±=    where m = integer = 0, 1, 2, 3, … 

 Since  ( ) ( ), , , , 2V r V rϑ ϕ ϑ ϕ π= ±   i.e. ( ) ( )2Q Qϕ ϕ π= ±  

 Then: ( )Q ϕ  must be single-valued! 
Thus: 

( )
( )

( )
( )2

2 2 2
2 2

1 1 1sin sin
sin

d U r dPdr m
U r dr r P d d

θ
θ θ

θ θ θ θ
⎡ ⎤⎛ ⎞

+ = +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

( )
( )

( )
( )2 2

2 2 2 2

1 1 1 sin
sin sin

d U r dPd m
U r dr r P d d r

θ
θ

θ θ θ θ θ
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

 

 
multiply above equation by r2:   

( )
( )

( )
( )22 2

2 2

      

1 1 sin
sin sin

function only of r function only of

d U r dPr d m
U r dr P d d

θ

θ
θ α

θ θ θ θ θ
⎛ ⎞

= − + = −⎜ ⎟
⎝ ⎠���	��
 ��������	�������


    ( )0α ≥  

  must hold for any/all r and θ !!       
 

( ) ( )
2

2 2    0
d U r

U r
dr r

α
∴ − =  and ( ) ( )

2

2

1 sin 0
sin sin

dPd m P
d d

θ
θ α θ

θ θ θ θ
⎛ ⎞ ⎡ ⎤

+ − =⎜ ⎟ ⎢ ⎥
⎣ ⎦⎝ ⎠

 

 
let / define ( )1α ≡ +A A  where A  = integer = 0, 1, 2, 3, … 
(Trust me, ☺ I know the answer . . .) 
 

( ) ( ) ( )
2

2 2

1
    0

d U r
U r

dr r
+

∴ − =
A A

 and  ( ) ( ) ( )
2

2

1 sin 1 0
sin sin

dPd m P
d d

θ
θ θ

θ θ θ θ
⎛ ⎞ ⎡ ⎤

+ + − =⎜ ⎟ ⎢ ⎥
⎣ ⎦⎝ ⎠
A A  
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Now let cosx θ=    2 2 2cos 1 sinx θ θ= = −  
cos sindx d dθ θ θ= =   2 2 2   sin 1 cos 1 xθ θ∴ = − = −  

     2sin 1 xθ = −  
 

Then: ( ) ( ) ( )
2 2

2

1 sin 1 0
sin sin sin

dPd m P
d d

θθ θ
θ θ θ θ θ

⎛ ⎞ ⎡ ⎤
+ + − =⎜ ⎟ ⎢ ⎥
⎣ ⎦⎝ ⎠
A A  

Becomes: ( ) ( ) ( ) ( ) ( )
2

2
2

1 1 0        
1

dP xd mx P x
dx dx x

⎡ ⎤⎛ ⎞
⎢ ⎥− + + − = ⇐⎜ ⎟

−⎢ ⎥⎝ ⎠ ⎣ ⎦
A A Generalized Legendre' Equation 

 

General Solutions of the radial equation, ( ) ( ) ( )
2

2 2

1
0

d U r
U r

dr r
+

− =
A A

 are of the form: 

( ) ( 1)U r Ar Br− += +A A   (l + A + B) are determined by boundary conditions… 
 
For m = 0 (azimuthally-symmetric problems – no φ-dependence) the general solution for 
azimuthally-symmetric potential ( ),V r θ  is of the form: 

( ) ( )( 1)

0
" " '

  

, cos
ordinary Legendre

Polynomial of order

V r A r B r Pθ θ
∞

− +

=

⎡ ⎤= +⎣ ⎦∑ A A
A A A

A

A

��	�
  

The coefficients AA  and BA  are determined by the boundary conditions 
n.b.  If ∃  no charges at r = 0, then BA  = 0  ∀  A  !! 

 
Rodrigues’ Formula is useful for “ordinary” Legendre' Polynomials: 

 ( ) ( )21 1
2 !

dP x x
dx

⎛ ⎞≡ −⎜ ⎟
⎝ ⎠

A A

A A AA
 

 

The coefficients AA  and BA  can be found / determined by evaluating ( ),V r θ  on the conducting 

surfaces in the problem, e.g. suppose we want to determine ( )V rG inside a conducting sphere of 
radius r = a. Then on the surface of the conducting sphere at radius r = a (an equipotential!): 

( ) ( ), cos   = constant       V r a A a Pθ θ= = ⇐∑ A
A A Legendre' Series 

n.b. inside conducting sphere, e.g. there are no charges at r = 0    0  B∴ = ∀A A  
 
In order to determine coefficients, take inner product:   
 

( ) ( ) ( )
0

2 1
, cos sin

2
normalization
factor

A V r a P d
a

π
θ θ θ θ

+⎛ ⎞
= =⎜ ⎟
⎝ ⎠

∫A AA

A

��	�
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Orthogonality condition on ( )P xA ’s: 

( ) ( ) ( ) N
1

1
Kroenecker

-function

2
2 1

P x P x dx

δ

δ
−

′ ′−
=

+∫ A A A AA
 

'

'

0  '  
   

1  '
l l

l l

for l l

for l l

δ

δ

= ≠⎧ ⎫⎪ ⎪
⎨ ⎬= =⎪ ⎪⎩ ⎭

 

 

n.b. The ( )cosP θA  functions form a complete orthonormal basis set on the unit circle (r = 1)  
       for 1 cos 1θ− ≤ ≤  or:   0 θ π≤ ≤  
 
“Ordinary” Legendre’ Polynomials ( )P xA  ( )cosx θ=  defined on the interval 1 1x− ≤ ≤ : 

     ( )0 1P x =     

  ( )1P x x=  

  ( ) ( )2
2

1 3 1
2

P x x= −  

  ( ) ( )3
3

1 5 3
2

P x x x= −  

  ( ) ( )4 2
4

1 35 30 3
8

P x x x= − +  

  ( ) ( )5 3
5

1 63 70 15
8

P x x x x= + +  

  … 
 

Note:   All ( )evenP x=A  functions are even functions of x:  ( ) ( )even evenP x P x= =− = +A A  

 All ( )oddP x=A  functions are  odd  functions of x:  ( ) ( )odd oddP x P x= =− = −A A  

 under x → −x reflection. Generally speaking, ( ) ( ) ( )1P x P x− = − A
A A . 

 

If 3-D spherical coordinate problem DOES have azimuthal / ϕ -dependence, then 2 0m ≠   
in Associated Legendre' Equation (A.L.E.): 
 

( ) ( ) ( )
2

2

1 sin 1 0
sin sin

dPd m P
d d

θ
θ θ

θ θ θ θ
⎛ ⎞ ⎡ ⎤

+ + − =⎜ ⎟ ⎢ ⎥
⎣ ⎦⎝ ⎠
A A    cosx θ=  

 
Solutions to A.L.E. are Associated Legendre' Polynomials (A.L.P.’s) 
 

Associated Legendre’ Polynomials: ( ) ( ) ( ) ( )N
2 2

" "
'

1 1
m m

mm
m

ordinary
Legendre
Polynomial

dP x x P x
dx

≡ − −A A  

 integer 0m = ± ≠  
i.e. 1, 2, 3,...m = ± ± ±   but have a constraint on m !!!  m− ≤ ≤ +A A  
 

i.e. , 1, 2,... 2, 1,  0, 1, 2, 2, 1,m = − − + − + − − + + − −A A A A A A  
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Also: ( ) ( ) ( )
( ) ( )!

1
!

mm mm
P x P x

m
− −

= −
+A A

A
A

 

 

Orthogonality condition for ( )mP xA  for fixed m: 
 

( ) ( ) ( )
( )
( ) N

1

1
Kroenecker

-function

!2
2 1 !

m m m
P x P x dx

m
δ

δ′ ′−

+
=

+ −∫ A A A A

A
A A

 

 
 

We now define normalized ( ) ( )P Qθ ϕ  functions known as Spherical Harmonics: 
 

( ) ( ) ( )
( ) ( )

( )
N

2 1 !
, cos

4 !
m

m im
m

Q

m
Y P e

m
ϕ

ϕ

θ ϕ θ
π =

+ −
≡

+A A

A A
A

 

 

The Spherical Harmonics ( ),mY θ ϕA  form a complete orthonormal set of basis “vectors” on the 
surface of the unit sphere (r = 1) 
 

Note that ( ) ( ) ( )*, 1 ,m
m mY Yθ ϕ θ ϕ− = −A A  complex conjugate 

 

       i.e. i → −i  where 1i ≡ −  
 

( ),mY θ ϕA  Normalization and Orthogonality Condition: 
 

( ) ( )
2 *

0 0
sin , ,m m m md d Y Y

π π
ϕ θ θ θ ϕ θ ϕ δ δ′ ′ ′ ′=∫ ∫ A A A A  

i.e.  ( ) ( )
4 *

0
, ,m m m md Y Y

π
θ ϕ θ ϕ δ δ

Ω=

′ ′ ′ ′Ω=
Ω =∫ A A A A   sind d dθ θ ϕΩ =  

 

Completeness’ Relation:       ( ) ( ) ( ) ( )*

0

, , cos cos ' 'm m
m

Y Yθ ϕ θ ϕ δ θ θ δ ϕ ϕ
∞

= =−

= − −∑ ∑
A

A A
A A ���	��
��	�
  

        DIRAC δ -functions 
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    ( ),mY θ ϕA  Spherical Harmonics 
 

A  = 0  00
1
4

Y
π

=     Use ( ) ( ) ( )*, 1 ,m
m mY Yθ ϕ θ ϕ− = −A A  

       in order to obtain 2 2 2 1, ,Y Y− − 3 3 3 2 3 1, ,Y Y Y− − −  etc. 

A  = 1  11
3 sin

8
iY e ϕθ

π
= −        

  10
3 cos

4
Y θ

π
= −    Note: 

      ( ) ( ) ( )
( ) ( )2 1 !

, cos
4 !

m im
m

m
Y P e

m
ϕθ ϕ θ

π
+ −

≡
+A A

A A
A

 

2 2
22

1 15 sin
4 2

iY e ϕθ
π

=   ( ) ( ) ( )0

2 1
, cos

4
Y Pθ ϕ θ

π
+

=A A

A
 

A  = 2  21
5 sin cos

8
iY e ϕθ θ

π
= −   

  2
20

5 3 1cos
4 2 2

Y θ
π
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

 

  3 3
33

1 35 sin
4 4

iY e ϕθ
π

= −  

A  = 3  2 2
32

1 105 sin cos
4 2

iY e ϕθ θ
π

=  

  ( )2
31

1 21 sin 5cos 1
4 4

iY e ϕθ θ
π

= − −  

  3
30

7 5 3cos cos
4 2 2

Y θ θ
π
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

….  …. etc. 
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General Solution for Laplace’s Equation ( )2 , ,V r θ ϕ∇  in Spherical Polar Coordinates 
 

  ( ) ( ) ( )1

0
, , ,m m m

m

V r A r B r Yθ ϕ θ ϕ
∞ +

− +

= =−

⎡ ⎤= +⎣ ⎦∑ ∑
A

AA
A A A

A A
 

 
Coefficients mAA and mBA are determined by / from Boundary Conditions on spherical surface(s) 
 
If ( ),V V θ ϕ=  on surface (e.g. at r = a)  

(i.e. no charge at r = 0 in problem → ,0 m mB = ∀A A ) 
 

Then:  ( ) ( )
0

, ,m m
m

V A Yθ ϕ θ ϕ
∞ +

= =−

=∑ ∑
A

A A
A A

 on surface (r = a). 

And:  ( ) ( )
4 *

0
, ,m mA d Y V

π
θ ϕ θ ϕ= Ω∫A A  on surface (r = a). 

Note:  N
( )

0
0" "

2 1
( 0, )

4north
pole

V Aθ ϕ
π

∞

=

+
= =∑ A

A

A
 

 ( ) ( ) ( )
4

0 0

2 1
cos ,

4
A d P V

π
θ θ ϕ

π
+

= Ω∫A A

A
 

 
 
General Comments:  The method of separation of variables used in Laplace’s equation 2 0V∇ =  
in rectangular, cylindrical and spherical coordinates shows up again in Poisson’s Equation 

2 free

o

V
ρ
ε

∇ = −  and also in the wave equation (valid for all classical wave phenomena) 

( ) ( )2
2

2 2

,1, 0
r t

r t
c t

ψ
ψ

∂
∇ + =

∂

G
G  and in Schrödinger’s wave equation H Eψ ψ=  in Quantum 

Mechanics problems.  These equations will appear again and again, in one form or another for 
E&M, Classical Mechanics, Quantum Mechanics courses as well as for Classical / Newtonian 
Gravity problems… 
 
For more detailed information e.g. on separation of variables and solutions to 3-D Wave 

Equation 
2

2
2 2

1
c t

ψψ ∂
∇ = −

∂
 in rectangular, cylindrical and spherical coordinates see Prof. S. 

Errede lecture notes (Lecture IV – parts 1 & 2) on (sound) waves in 1-D, 2-D, 3D Physics 406 
Acoustical Physics of Music website: 
 
 http://online.physics.uiuc.edu/courses/phys406/406_lectures.html  
 
and also see/read his Fourier Analysis Lectures on this website, if interested. 


