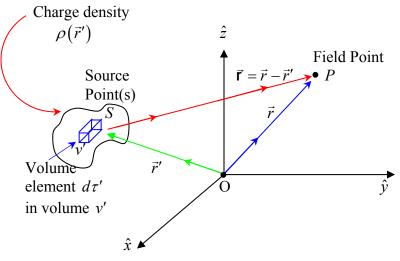
1

LECTURE NOTES 7

LAPLACE'S EQUATION

As we have seen in previous lectures, very often the primary task in an electrostatics problem is e.g. to determine the electric field $\vec{E}(\vec{r})$ of a given stationary/static charge distribution -e.g. via Coulomb's Law:



$$\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_o} \int_{\vec{r}} \frac{\hat{\mathbf{r}}}{\mathbf{r}^2} \rho(\vec{r}') d\tau' \qquad \qquad \vec{\mathbf{r}} = \vec{r} - \vec{r}' \qquad \hat{\mathbf{r}} = \frac{\vec{r}}{|\vec{r}|} = \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|}$$

$$|\vec{\mathbf{r}}| = |\vec{r} - \vec{r}'| = \sqrt{(x_p - x_s)^2 + (y_p - y_s)^2 + (z_p - z_s)^2}$$

Oftentimes $\rho(\vec{r}')$ is complicated, and <u>analytic</u> calculation of $\vec{E}(\vec{r})$ is painful / tedious (or just plain hard). (Numerical integration on a computer is likely faster/easier. . .)

Oftentimes it is easier to <u>first</u> calculate the potential $V(\vec{r})$, and <u>then</u> use $\vec{E}(\vec{r}) = -\nabla V(\vec{r})$

Here:
$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_{r'} \frac{1}{\mathbf{r}} \rho(\vec{r}') d\tau'$$

But even doing this integral analytically often can be very challenging. . .

Furthermore, often in problems involving conductors, $\rho(\vec{r}')$ may not *apriori* (*i.e.* beforehand) be known! Charge is free to move around, and often only the total <u>free</u> charge Q_{free} is controlled / known in the problem.

In such cases, it is usually better to recast the problem in DIFFERENTIAL form, using Poisson's equation:

$$\overline{\nabla} \bullet \vec{E}(\vec{r}) = -\overline{\nabla} \bullet \overline{\nabla} V(\vec{r}) = -\nabla^2 V(\vec{r}) = \frac{\rho(\vec{r})}{\varepsilon_o}$$

$$\underline{Or}: \qquad \overline{\nabla^2 V(\vec{r})} = -\frac{\rho(\vec{r})}{\varepsilon_o} \iff \text{Poisson's Equation}$$

Poisson's equation, together with the <u>boundary conditions</u> associated with the value(s) allowed for $V(\vec{r})$ e.g. on various conducting surfaces, or at $r = \infty$, etc. enables one to <u>uniquely</u> determine $V(\vec{r})$ (we'll see how / why shortly. . .).

The Poisson equation is an <u>inhomogeneous</u> second-order differential equation – its solution consists of a <u>particular</u> solution for the inhomogeneous term (RHS of Poisson's Equation) plus the general solution for the homogeneous second-order differential equation:

$$\nabla^2 V(\vec{r}) = 0$$
 \leftarrow Laplace's Equation

commensurate with the boundary conditions for the specific problem at hand.

Very often, in fact, we are interested in finding the potential $V(\vec{r})$ in a <u>charge-free</u> region, containing no electric charge, *i.e.* where $\rho(\vec{r}') = 0$.

If $\rho(\vec{r}') = 0$, then $\nabla^2 V(\vec{r}) = 0$ and the TRIVIAL solution is $V(\vec{r}) = 0 \ \forall \ \vec{r}$, which is boring / useless!

We seek <u>physically meaningful</u> / <u>non-trivial</u> solutions $V(\vec{r}) \neq 0$ that satisfy $\nabla^2 V(\vec{r}) = 0$ and the boundary conditions on $V(\vec{r})$ for a given physical problem.

Now, before we go any further on this discussion, let's back up a bit and take a (very) broad generalized MATHEMATICAL view (or approach) to find $V(\vec{r})$.

First, let's simplify the discussion, by talking about *one-dimensional* problems:

If $\rho(x) = 0$, Laplace's Equation in one-dimension becomes (in rectangular/Cartesian coordinates):

$$\nabla^2 V(\vec{r}) = 0$$
 $\Rightarrow \frac{d^2 V(x)}{dx^2} = 0$ \Leftarrow Note the total (not partial) derivative with regards to x.

Integrating this equation (both sides) once, we have:

$$\int \frac{d^2V(x)}{d^2x} dx = \int \frac{d}{dx} \left(\frac{dV(x)}{dx} \right) dx = \int d\left(\frac{dV}{dx} \right) = \frac{dV(x)}{dx} = \int dx = m = 1^{\text{st}} \text{ constant of integration}$$

Then:
$$\int \frac{dV(x)}{dx} dx = \int m dx = m \int dx$$

Or:
$$\int dV(x) = V(x) = mx + b \leftarrow 2^{\text{nd}}$$
 constant of integration

So: V(x) = b + mx (equation for a straight line) is the general solution for $\frac{d^2V(x)}{dx^2} = 0$.

y-intercept slope

Depending on the boundary conditions for the problem, *e.g.* suppose V(x=5)=0 Volts and V(x=1)=4 Volts, then together, these two boundary conditions <u>uniquely</u> specify what *b* and *m* must be – we have two equations, and two unknowns (m & b) – solve simultaneously:

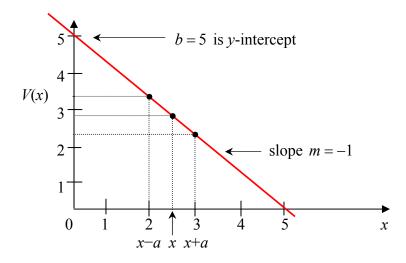
$$V(x) = b + mx \leftarrow$$
 equation for a straight line y-intercept slope

$$V(x=5) = 0 = b + 5m \rightarrow b = -5m$$

 $V(x=1) = 4 = b + 1m \rightarrow 4 = -5m + 1m = -4m$

:.
$$V(x) = 5 - 1x$$
 or: $m = -1$ and $b = 5$.

V(x) = 5 - 1x is the equation of a straight line for <u>this</u> problem.



General features of 1-D Laplace's Equation $\nabla^2 V(x) = 0$ and potential V(x):

1. From above one-dimensional case V(x) = b + mx (general solution = straight line eqn.) we can see that:

$$V(x)$$
 is the average of $V(x+a)$ and $V(x-a)$ i.e. $V(x) = \frac{1}{2} \{V(x+a) + V(x-a)\}$

⇒ Laplace's Equation is a kind of *averaging instruction*

The solutions of V(x) are as "boring" as possible, but fit the endpoints (boundary conditions) properly.

This may be "obvious" in one-dimension, but it is also true / also holds in 2-D and 3-D cases of $\nabla^2 V(\vec{r}) = 0$.

- 2. $\nabla^2 V(\vec{r})$ tolerates / allows NO local maxima or minima extrema <u>must</u> occur at <u>endpoints</u> i.e. $\nabla^2 V(\vec{r}) = 0$ requires the <u>second spatial derivative(s)</u> of $V(\vec{r})$ to be <u>zero</u>.
 - Not a proof, because e.g. \exists fcns(x) where the second derivative <u>vanishes</u> other than at endpoints - e.g. $f(x) = x^4$ (has a minimum at x = 0).

Laplace's Equation in Two Dimensions (in Rectangular/Cartesian Coordinates)

If
$$V = V(x, y)$$
 then $\nabla^2 V = 0 \implies \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0$

n.b. now have <u>partial</u> derivatives of $V(\vec{r})$.

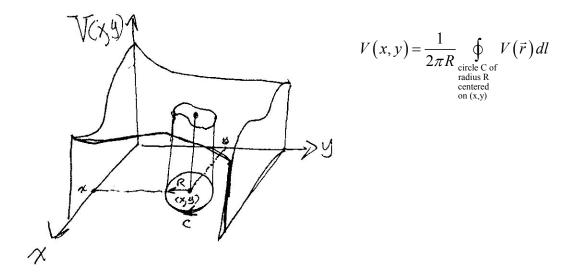
Because $\nabla^2 V = 0 = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) V(x, y)$ now contains <u>partial</u> derivatives, the general solution

does <u>not</u> contain just two arbitrary constants or any finite number - ∃ an <u>infinite</u> number of possible solutions (in general)

- the most general solution is a linear combination of harmonic functions (sine and cosine functions of x and y in rectangular coordinates and other functions (Bessel Functions) in cylindrical coordinates).

Nevertheless, V(x, y) will still wind up being the <u>average value of V</u> around a point (x, y)within a <u>circle</u> of radius R <u>centered</u> on the point (x, y).

The Method of Relaxation - Iterative Computer Algorithm for Finding V(x,y):



- Start with V(x, y) as specified on boundary (fixed)
- Choose reasonable "interpolated" values of V(x, y) (from boundary) on <u>interior</u> (x, y)points away from the boundaries.
- 1^{st} pass reassigns $V(x,y) = \underline{average\ value\ at\ interior\ point}\ (x,y)$ of its $\underline{nearest}$ neighbors.
- 2nd pass repeats this process . . . 3rd pass repeats this process . . .

After few iterations, V(x, y) of n^{th} iteration settles down, e.g. when:

$$\Delta V(x,y) = \left| V_n(x,y) - V_{n-1}(x,y) \right| \le \text{tolerance}$$

then QUIT iterating, V(x, y) is determined after n^{th} iteration is "good enough".

V(x,y) again will have no local maxima or minima – all extrema will occur on boundaries. $\nabla^2 V(x,y) = 0$ has solution V(x,y) which is the most featureless function – as smooth as possible.

Laplace's Equation in Three Dimensions

Can't draw this on 2-D sheet of paper (because now this is a 4 dimensional problem!), but:

 $V(x, y, z) = V(\vec{r})$ = average value of V over a spherical surface of radius R centered on \vec{r} .

i.e.
$$V(\vec{r}) = \frac{1}{4\pi R^2} \oint_{\substack{\text{of radius R} \\ \text{of radius R}}} Vda$$

Again $V(\vec{r})$ will have no local maxima or minima

- all extrema <u>must</u> occur at boundaries of problem (see work-through proof in Griffiths, p. 114)
- The average potential produced by a collection of charges, averaged over a sphere of radius *R* is equal to the value of the potential at the center of that sphere!

Boundary Conditions on the Potential $V(\vec{r})$

Dirichlet Boundary Conditions on $V(\vec{r})$:

 $V(\vec{r})$ <u>itself</u> is specified (somewhere) on the boundary - *i.e.* the <u>value</u> of $V(\vec{r})$ is specified (somewhere) on the boundary.

Neumann Boundary Conditions on $V(\vec{r})$:

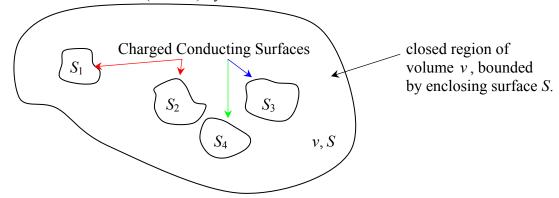
The <u>normal</u> derivative of $V(\vec{r})$ is specified somewhere on the boundary - i.e.

 $\nabla V(\vec{r}) \cdot \hat{n} = -E^{\perp}(\vec{r})$ is specified somewhere on the boundary.

Uniqueness Theorem(s):

Suppose we have \underline{two} solutions of Laplace's equation, $V_1(\vec{r})$ and $V_2(\vec{r})$, each satisfying the \underline{same} boundary condition(s), *i.e.* the potentials $V_1(\vec{r})$ and $V_2(\vec{r})$ are specified on the boundaries. We assert that the two solutions can at most differ by a $\underline{constant}$. (n.b. Only $\underline{differences}$ in the scalar potential $V(\vec{r})$ are important / physically meaningful!)

Proof: Consider a closed region of space with volume v which is exterior to n charged conducting surfaces S_1 , S_2 , S_3 . . . S_n that are responsible for generating the potential V. The volume v is bounded (outside) by the surface S.



Suppose we have \underline{two} solutions $V_1(r)$ and $V_2(r)$ both satisfying $\nabla^2 V(\vec{r}) = 0$ i.e. $\nabla^2 V_1(\vec{r}) = 0$ and $\nabla^2 V_2(\vec{r}) = 0$ in the <u>charge-free</u> region(s) of the volume v.

 $V_1(r)$ and $V_2(r)$ satisfy either Dirichlet boundary conditions or satisfy Neumann boundary conditions $\nabla V(\vec{r}) \cdot \hat{n}$ on the surfaces $S_1, S_2, S_3 \dots S_n$. We also demand that V(r) be <u>finite</u> at $r = \infty$.

Let us define: $V_{\Delta}(\vec{r}) = V_{1}(\vec{r}) - V_{2}(\vec{r}) = \text{difference in the two potential solutions at the point } \vec{r}$.

Since both $\nabla^2 V_1(\vec{r}) = 0$ and $\nabla^2 V_2(\vec{r}) = 0$ then:

$$\nabla^{2}V_{\Delta}(\vec{r}) = \nabla^{2}\left(V_{1}(\vec{r}) - V_{2}(\vec{r})\right) = \underbrace{\nabla^{2}V_{1}(\vec{r})}_{\text{separately}} - \underbrace{\nabla^{2}V_{2}(\vec{r})}_{\text{separately}} = 0 \quad \underline{\text{Note that:}} \quad \nabla^{2}V(\vec{r}) = \overline{\nabla} \cdot \left(\overline{\nabla}V(\vec{r})\right)$$

The potentials $V_{i=1,2}$ are uniquely specified on charged (equipotential) surfaces $S_1, S_2, S_3, \ldots S_n$ in the volume v.

Now apply the <u>divergence theorem</u> to the quantity $(V_{\Delta}\vec{\nabla}V_{\Delta})$; we also define: $\vec{E}_{\Delta}(\vec{r}) \equiv -\vec{\nabla}V_{\Delta}(\vec{r})$

$$\int_{V} \vec{\nabla} \cdot \left(V_{\Delta} \vec{\nabla} V_{\Delta} \right) d\tau = \int_{\substack{S_{+} \\ S_{1} + S_{2} + S_{3} + \dots S_{n}}} \left(V_{\Delta} \vec{\nabla} V_{\Delta} \right) \cdot d\vec{A} = \int_{\substack{S_{+} \\ S_{1} + S_{2} + S_{3} + \dots S_{n}}} V_{\Delta} \left(-\vec{E}_{\Delta} \right) \cdot d\vec{A}$$

Volume integral over enclosing volume *v*

Surface integral over ALL surfaces in *v*

Then:

$$-\int_{S_1+S_2+S_3+\dots S_n} V_{\Delta}\left(\vec{E}_{\Delta} \bullet d\vec{A}\right) = -\int_{S} V_{\Delta}\left(\vec{E}_{\Delta} \bullet d\vec{A}_{S}\right) - \int_{S_1} V_{\Delta}\left(\vec{E}_{\Delta} \bullet d\vec{A}_{S_1}\right) - \int_{S_2} V_{\Delta}\left(\vec{E}_{\Delta} \bullet d\vec{A}_{S_2}\right) - \dots - \int_{S_n} V_{\Delta}\left(\vec{E}_{\Delta} \bullet d\vec{A}_{S_n}\right)$$

Recognizing that:

- 1. The conducting surfaces $S_1, S_2, S_3, \ldots S_n$, are <u>equipotentials</u>. Thus: $V_{\Lambda}(\vec{r}) = V_1(\vec{r}) - V_2(\vec{r})$ (= a constant on surfaces $S_1, S_2, S_3, \ldots S_n$) <u>must</u> = 0 at/on those surfaces!!!
- 2. The volume v is arbitrary, so let's choose volume $v \to \infty$, and thus surface area $S \to \infty$ as well.
- 3. $\int_{S} \vec{E}_{\Delta} \cdot d\vec{A}_{i} = \Phi_{E_{i}} = \text{electric flux through } i^{th} \text{ surface.}$
- 4. $V_{\Delta}(r \to \infty) = V_1(r \to \infty) V_2(r \to \infty)$ (= constant on surface $S \to \infty$) <u>must</u> = 0 because $V_1(r \to \infty) = V_2(r \to \infty)$.

$$\therefore \int_{\substack{u \text{ all space}}} \vec{\nabla} \cdot \left(V_{\Delta} \vec{\nabla} V_{\Delta} \right) d\tau = - \underbrace{V_{\Delta}^{S}}_{=0} \underbrace{\int_{\substack{u \text{ space}}}}_{\text{space}} \vec{E}_{\Delta} \cdot d\vec{A}_{S} - \underbrace{V_{\Delta}^{S_{1}}}_{=0} \underbrace{\int_{\substack{u \text{ space}}}}_{=0} \vec{E}_{\Delta} \cdot d\vec{A}_{S_{1}} - \underbrace{V_{\Delta}^{S_{2}}}_{=0} \underbrace{\int_{\substack{u \text{ space}}}}_{=0} \vec{E}_{\Delta} \cdot d\vec{A}_{S_{2}} - \dots - \underbrace{V_{\Delta}^{S_{n}}}_{=0} \underbrace{\int_{\substack{u \text{ space}}}}_{=0} \vec{E}_{\Delta} \cdot d\vec{A}_{S_{n}}$$

Thus:
$$\int_{\substack{v \\ all \ space}} \vec{\nabla} \cdot \left(V_{\Delta} \vec{\nabla} V_{\Delta} \right) d\tau = 0$$

However, using the identity $\overrightarrow{\nabla} \cdot \left(V_{\Delta} \overrightarrow{\nabla} V_{\Delta} \right) = V_{\Delta} \left(\nabla^{2} V_{\Delta} \right) + \left(\overrightarrow{\nabla} V_{\Delta} \right)^{2}$

The <u>only</u> way $\int_{V} \underbrace{\left(\overrightarrow{\nabla}V_{\Delta}\right)^{2}}_{mathematically} d\tau = 0$ is **iff** (i.e. if and only if) the integrand $\left(\overrightarrow{\nabla}V_{\Delta}\left(\overrightarrow{r}\right)\right)^{2} = \left(\overrightarrow{\nabla}V_{\Delta}\left(\overrightarrow{r}\right) \cdot \overrightarrow{\nabla}V_{\Delta}\left(\overrightarrow{r}\right)\right) = 0$.

If
$$(\overrightarrow{\nabla}V_{\Delta}(\vec{r}))^2 = (\overrightarrow{\nabla}V_{\Delta}(\vec{r}) \cdot \overrightarrow{\nabla}V_{\Delta}(\vec{r})) = 0$$
, then: $\overrightarrow{\nabla}V_{\Delta}(\vec{r})$ itself must be $= 0$ (i.e. $\overrightarrow{A}(\vec{r}) \cdot \overrightarrow{A}(\vec{r}) = 0 \Rightarrow \overrightarrow{A}(\vec{r}) = 0$) for all points (\vec{r}) in volume \vec{v} .

If $\nabla V_{\Delta}(\vec{r}) = 0$ for all points \vec{r} in volume v, then $V_{\Delta}(\vec{r}) = \text{(same)}$ constant at all points in volume v. $\therefore V_{\Delta}(\vec{r}) = V_{1}(\vec{r}) - V_{2}(\vec{r}) = \text{constant}$ at all points in volume v.

<u>Dirichlet Boundary Conditions</u> (V specified on surfaces $S_1, S_2, S_3, \ldots, S_n$)

If $V_1(r)$ and $V_2(r)$ are specified on the surfaces $S_1, S_2, S_3, \ldots, S_n$ in the volume v enclosed by surface S (Dirichlet boundary conditions), then: $V_{\Delta}(\vec{r}) = V_1(\vec{r}) - V_2(\vec{r}) = 0$ (*i.e.* the problem is <u>over-determined</u>).

$$must = 0!$$

 $\therefore V_{\Delta}(\vec{r}) = 0$ throughout the volume v and $V_{1}(\vec{r}) = V_{2}(\vec{r})$ throughout the volume v.

i.e. the two solutions $V_1(r)$ and $V_2(r)$ for $\nabla^2 V(\vec{r}) = 0$ are <u>identical</u> – there is only <u>one</u> <u>unique</u> solution.

Neumann Boundary Conditions (E^{\perp} specified on surfaces $S_1, S_2, S_3, \ldots, S_n$)

If $\nabla V_1 \cdot \hat{n} = -\vec{E}_1^{\perp}$ and $\nabla V_2 \cdot \hat{n} = -\vec{E}_2^{\perp}$ are specified on the surfaces $S_1, S_2, S_3, \ldots, S_n$ in the volume v enclosed by surface S (Neumann boundary conditions), then $\nabla V_{\Delta}(\vec{r}) = \nabla V_{1}(\vec{r}) - \nabla V_{2}(\vec{r}) = 0$ at all points in volume v and $\nabla V_{\Delta} \cdot \hat{n} = 0$.

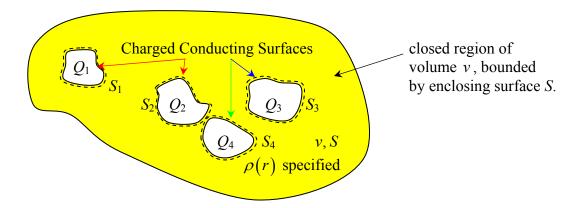
Then $V_{\Delta}(\vec{r}) = V_{1}(\vec{r}) - V_{2}(\vec{r}) = \text{constant}$, but is <u>not</u> necessarily = 0!!!

Here, solutions $V_1(r)$ and $V_2(r)$ <u>can</u> differ, but <u>only</u> by a constant V_o . $e.g.\ V_1(\vec{r}) = V_2(\vec{r}) + V_o \implies$ problem is NOT over-determined for $V(\vec{r})$. $(\vec{E}(\vec{r}) \ \underline{is} \ \text{over-determined} \ / \ \text{unique}, \ \text{but} \ \underline{not} \ V(\vec{r})).$

Physical Example:

 $\Delta V = 100 V$ in both cases – thus E-field is same/identical in both cases!

If we instead specify the charge densit(ies) $\rho(r)$ within the volume v (see figure below), then we also have a uniqueness theorem for the electric field associated with Poisson's equation $(\vec{\nabla} \cdot \vec{E}(\vec{r}) = -\nabla^2 V(\vec{r}) = \rho(r)/\varepsilon_o)$.



Suppose there are \underline{two} electric fields $\vec{E}_1(\vec{r})$ and $\vec{E}_2(\vec{r})$, both satisfying all of the boundary conditions of this problem. Both obey Gauss' law in differential and integral form everywhere within the volume v:

$$\vec{\nabla} \cdot \vec{E}_{1}(\vec{r}) = \rho(r)/\varepsilon_{o} \text{ and: } \vec{\nabla} \cdot \vec{E}_{2}(\vec{r}) = \rho(r)/\varepsilon_{o}$$

$$\oint_{\substack{i^{th} conducting \\ surface, S_{i}}} \vec{E}_{1} \cdot da = \frac{1}{\varepsilon_{o}} Q_{i}^{encl} \text{ and: } \oint_{\substack{i^{th} conducting \\ surface, S_{i}}} \vec{E}_{2} \cdot da = \frac{1}{\varepsilon_{o}} Q_{i}^{encl}$$

At the outer boundary (enclosing surface *S*) we also have:

$$\int_{S} \vec{E}_{1} \cdot da = \frac{1}{\varepsilon_{o}} Q_{tot}^{encl} \text{ and: } \int_{S} \vec{E}_{2} \cdot da = \frac{1}{\varepsilon_{o}} Q_{tot}^{encl}$$

We define the difference in electric fields: $\vec{E}_{\Delta}(\vec{r}) \equiv \vec{E}_{1}(\vec{r}) - \vec{E}_{2}(\vec{r})$ which, in the region between the conductors, obeys $\vec{\nabla} \cdot \vec{E}_{\Delta}(\vec{r}) = \vec{\nabla} \cdot \vec{E}_{1}(\vec{r}) - \vec{\nabla} \cdot \vec{E}_{2}(\vec{r}) = \rho(r)/\varepsilon_{o} - \rho(r)/\varepsilon_{o} = 0$, and obeys $\int_{S_{i}} \vec{E}_{\Delta} \cdot da = \int_{S_{i}} \vec{E}_{1} \cdot da - \int_{S_{i}} \vec{E}_{2} \cdot da = \frac{1}{\varepsilon_{o}} Q_{i}^{encl} - \frac{1}{\varepsilon_{o}} Q_{i}^{encl} = 0 \text{ over each boundary surface } S_{i}.$

Even though we do not know how the charge Q_i on the i^{th} conducing surface S_i is distributed, we <u>do</u> know that each surface S_i is an <u>equipotential</u>, hence the scalar potential $V_{\Delta} \equiv V_1 - V_2$ on each surface is at least a constant on each surface S_i (n.b. V_{Δ} may not necessarily be = 0, since in general V_2 may not in general be equal to V_1 on each/every surface S_i).

UIUC Physics 435 EM Fields & Sources I Fall Semester, 2007 Lecture Notes 7 Prof. Steven Errede

Using Griffith's product rule # 5: $\vec{\nabla} \cdot (f\vec{A}) = f(\vec{\nabla} \cdot \vec{A}) + \vec{A} \cdot (\vec{\nabla} f)$, then:

$$\vec{\nabla} \bullet \left(V_{\scriptscriptstyle \Delta} \vec{E}_{\scriptscriptstyle \Delta} \right) = V_{\scriptscriptstyle \Delta} \left(\vec{\nabla} \bullet \vec{E}_{\scriptscriptstyle \Delta} \right) + \vec{E}_{\scriptscriptstyle \Delta} \bullet \left(\vec{\nabla} V_{\scriptscriptstyle \Delta} \right)$$

However, in the region between conductors, we have shown (above) that $\vec{\nabla} \cdot \vec{E}_{\Delta}(\vec{r}) = 0$, and $\vec{E}_{\Delta} \equiv -\vec{\nabla} V_{\Delta}$, hence: $\vec{\nabla} \cdot (V_{\Delta} \vec{E}_{\Delta}) = \vec{E}_{\Delta} \cdot (\vec{\nabla} V_{\Delta}) = -\vec{E}_{\Delta} \cdot \vec{E}_{\Delta} = -E_{\Delta}^2$.

If we integrate this relation over the entire volume v (with associated enclosing surface S):

$$\int_{\mathcal{V}} \vec{\nabla} \cdot \left(V_{\Delta} \vec{E}_{\Delta} \right) d\tau = \oint_{all \, S} V_{\Delta} \vec{E}_{\Delta} \cdot d\vec{a} = - \int_{\mathcal{V}} E_{\Delta}^{2} d\tau$$

Note that the surface integral covers all boundaries of the region in question – the enclosing outer surface S and <u>all</u> of the S_i inner surfaces associated with the i conductors. Since V_{Δ} is a constant on each surface, it can be pulled outside of the surface integral (n.b. if the outer surface S is at infinity, then for localized sources of charge, $V_{\Delta}(r = \infty) = 0$). Thus:

$$V_{\Delta} \oint_{all \, S} \vec{E}_{\Delta} \cdot d\vec{a} = -\int_{\mathcal{V}} E_{\Delta}^{2} d\tau$$

But since we have shown above that $\int_{S_i} \vec{E}_{\Delta} \cdot da = 0$ for each surface S_i , then $\oint_{all \, S} \vec{E}_{\Delta} \cdot d\vec{a} = 0$. Therefore: $\int_{V} E_{\Delta}^2 d\tau = 0$. Note that the integrand $E_{\Delta}^2(\vec{r}) = \vec{E}_{\Delta}(\vec{r}) \cdot \vec{E}_{\Delta}(\vec{r})$ is <u>always</u> non-negative. Hence, in general, the <u>only</u> way that this integral can vanish is if $\vec{E}_{\Delta}(\vec{r}) \equiv \vec{E}_{1}(\vec{r}) - \vec{E}_{2}(\vec{r}) = 0$ everywhere, thus, we <u>must</u> have $\vec{E}_{1}(\vec{r}) = \vec{E}_{2}(\vec{r})$.

Solving Laplace's Equation $(\nabla^2 V(\vec{r}) = 0)$ in 3-D, 2-D and 1-D Situations

In general, when solving the potential $V(\vec{r})$ problems in 3 (or less) dimensions, first note the symmetries associated with the problem. Then, if you have:

$$\left\{ \begin{array}{c} \text{Rectangular} \\ \text{Cylindrical} \\ \text{Spherical} \end{array} \right\} \hspace{0.1cm} \text{Symmetry} \hspace{0.1cm} \Rightarrow \hspace{0.1cm} \begin{array}{c} \text{Solve} \\ \text{Problem} \\ \text{Using} \end{array} \left\{ \begin{array}{c} \text{Rectangular} \\ \text{Cylindrical} \\ \text{Spherical} \end{array} \right\} \hspace{0.1cm} \text{Coordinates}$$

In 2-D and 3-D problems, the general solutions to $\nabla^2 V(\vec{r}) = 0$ are the harmonic functions (an ∞ series solution, in principle) e.g. of sines and cosines, Bessel functions, or Legendre Polynomials and/or Spherical Harmonics.

The boundary conditions / symmetries will select a subset of the ∞ -solutions.

We will now work through derivations of finding solutions to Laplace's Equations in 3-dimensions in rectangular (i.e. Cartesian) coordinates, cylindrical coordinates, and spherical coordinates. We will also use / show the *method of separation of variables*.

<u>Laplace's Equation</u> $\nabla^2 V(x, y, z) = 0$ and Potential Problems with Rectangular Symmetry (Rectangular / Cartesian coordinates)

<u>In Three Dimensions</u>: Solve Laplace's equation in rectangular / Cartesian coordinates:

$$\nabla^2 V(x, y, z) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) V(x, y, z) = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$$

The solutions of $\nabla^2 V = 0$ in rectangular coordinates are known as harmonic functions (i.e. sines and cosines) (\rightarrow Fourier Series Solutions).

It is usually (but not always) possible to find a solution to the Laplace Equation, $\nabla^2 V = 0$ which also satisfies the boundary conditions, via separation of variables technique, i.e. try a product solution of the form:

$$V(x,y,z) = X(x)Y(y)Z(z)$$

$$\underline{\text{Then}}: \quad \nabla^2 V\left(x,y,z\right) = 0 \Rightarrow \frac{\partial^2 V\left(x,y,z\right)}{\partial x^2} + \frac{\partial^2 V\left(x,y,z\right)}{\partial y^2} + \frac{\partial^2 V\left(x,y,z\right)}{\partial z^2} = 0$$

But:
$$V(x, y, z) = X(x)Y(y)Z(z)$$

Thus:
$$\frac{\partial^2 X(x)Y(y)Z(z)}{\partial x^2} + \frac{\partial^2 X(x)Y(y)Z(z)}{\partial y^2} + \frac{\partial^2 X(x)Y(y)Z(z)}{\partial z^2} = 0$$
$$= Y(y)Z(z)\frac{\partial^2 X(x)}{\partial x^2} + X(x)Z(z)\frac{\partial^2 Y(y)}{\partial y^2} + X(x)Y(y)\frac{\partial^2 Z(z)}{\partial z^2} = 0$$

Now divide both sides of the above equation by X(x)Y(y)Z(z):

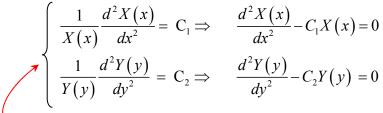
The only way the above equation can be true for <u>all</u> points (x, y, z) in volume v is if:

$$\begin{cases} \frac{1}{X(x)} \frac{\partial^2 X(x)}{\partial x^2} = \text{constant } C_1 \Rightarrow \boxed{\frac{d^2 X(x)}{dx^2} - C_1 X(x) = 0} & \#1 \\ \frac{1}{Y(y)} \frac{\partial^2 Y(y)}{\partial y^2} = \text{constant } C_2 \Rightarrow \boxed{\frac{d^2 Y(y)}{dy^2} - C_2 Y(y) = 0} & \#2 \\ \frac{1}{Z(z)} \frac{\partial^2 Z(z)}{\partial z^2} = \text{constant } C_3 \Rightarrow \boxed{\frac{d^2 Z(z)}{dz^2} - C_3 Z(z) = 0} & \#3 \end{cases}$$
Note total derivatives now Subject to the constraint: $C_1 + C_2 + C_3 = 0$

Can now solve 3 <u>ORDINARY</u> 1-*D* differential equations, #1–3, which are subject to $C_1 + C_2 + C_3 = 0$, PLUS the specific Dirichlet / Neumann <u>boundary conditions</u> for the problem on either V(x, y, z) or $\nabla V(x, y, z) \cdot \hat{n}$ at surfaces for this 3-*D* problem.

Essentially, we have replaced the 3-D problem with <u>three</u> 1-D problems, <u>and</u> the constraint: $C_1 + C_2 + C_3 = 0$.

* If one has a 2-D rectangular coordinate problem $(\nabla^2 V(x, y) = 0)$, then: V(x, y) = X(x)Y(y) (only).



Subject to the constraint: $C_1 + C_2 = 0$, *i.e.* $C_1 = -C_2$.

Plus BC's: either on V(x, y) or $\nabla V(x, y) \cdot \hat{n}$ for the 2-D problem.

* If one has a 1-D rectangular coordinate problem $(\nabla^2 V(x) = 0)$, then: V(x) = X(x) (only).

$$\frac{d^2V(x)}{dx^2} = 0 \implies \frac{d^2X(x)}{dx^2} = 0 \implies \frac{1}{X(x)} \frac{d^2X(x)}{dx^2} = 0 = C_1$$

$$\frac{d^2X(x)}{dx^2} = 0 \implies X(x) = V(x) = ax + b \text{ is } \underline{the} \text{ 1-D general solution.}$$

For 1-D problem $(\nabla^2 V(x) = 0)$, only need to solve one <u>ordinary</u> differential equation subject to the constraint $C_1 = 0$ and BC's on either V(x) or $\frac{dV(x)}{dx}$.

The General Solution V(x, y, z) = X(x)Y(y)Z(z) for $\nabla^2 V(x, y, z) = 0$ in Rectangular Coordinates

Since we have the constraint $C_1 + C_2 + C_3 = 0$, at least one of the C_i 's (i = 1, 2 or 3) must be less than zero.

Let us "choose" $C_1 = -\alpha^2$, $C_2 = -\beta^2$, $C_3 = \gamma^2$

Then:

$$C_1 + C_2 + C_3 = 0$$

$$-\alpha^2 - \beta^2 + \gamma^2 = 0 \qquad \underline{\text{or:}} \qquad \boxed{\alpha^2 + \beta^2 = \gamma^2}$$

The boundary conditions on the surfaces will define α and β , and hence define γ .

IMPORTANT NOTE:

The <u>geometry</u> (x - y - z) of the problem <u>and</u> the <u>boundary conditions</u> dictate whether:

$$C_1 > 0 \text{ or } C_1 < 0$$

$$C_2 > 0$$
 or $C_2 < 0$
 $C_3 > 0$ or $C_3 < 0$

$$C_3 > 0$$
 or $C_3 < 0$

i.e. have sine / cosine type solutions vs. $\sinh / \cosh (\text{or } e^x, e^{-x})$ type solutions for x, y, z.

Then <u>the</u> General Solution is (for above choice of $C_1 = -\alpha^2$, $C_2 = -\beta^2$, $C_3 = \gamma^2$):

$$V(x,y,z) = \sum_{m,n=0}^{\infty} A_{mn} \underbrace{\sin_{could} be}_{could} (\alpha_n x) \underbrace{\sin_{could} be}_{could} (\beta_m y) \underbrace{\sinh_{could} be}_{could} (\gamma_{mn} z)$$
 so we also have the additional series solutions:

$$+\sum_{m,n=0}^{\infty} B_{mn} \cos(\alpha_n x) \cos(\beta_m y) \sinh(\gamma_{mn} z)$$

$$= \sqrt{\alpha_n^2 + \beta_m^2}$$

$$+\sum_{m,n=0}^{\infty} C_{mn} \sin(\alpha_n x) \sin(\beta_m y) \cosh(\gamma_{mn} z)$$

$$+\sum_{m,n=0}^{\infty} D_{mn} \cos(\alpha_n x) \cos(\beta_m y) \cosh(\gamma_{mn} z)$$

$$= \sqrt{\alpha_n^2 + \beta_m^2}$$

n.b.
$$\cosh(x) = \frac{1}{2} (e^x + e^{-x})$$
 $\sinh(x) = \frac{1}{2} (e^x - e^{-x})$

$$n.b.$$
 $\sin(x) = \frac{1}{2i} (e^{ix} - e^{-ix})$ $\cos(x) = \frac{1}{2} (e^{ix} + e^{-ix})$ $i = \sqrt{-1}$

n.b.
$$e^{ix} = \cos(x) + i\sin(x)$$
 $e^{-ix} = \cos(x) - i\sin(x)$
n.b. $e^{x} = \cosh(x) + \sinh(x)$ $e^{-x} = \cosh(x) - \sinh(x)$

$$n.b.$$
 $e^x = \cosh(x) + \sinh(x)$ $e^{-x} = \cosh(x) - \sinh(x)$

The BC's and symmetries will determine which of the coefficients A_{mn} , B_{mn} , C_{mn} , $D_{mn} = 0$.

Fall Semester, 2007 Lecture Notes 7

We solve for the non-zero coefficients A_{pq} , B_{pq} , C_{pq} and D_{pq} by taking <u>inner products</u>. i.e. we multiply $V(x, y, z) = \sum_{n} (stuff)$ by e.g. $\sin(\alpha_n x) \sin(\beta_n y)$ to project out the p-qth component (i.e. we use the *orthogonality* properties of the individual terms in sin() and cos() Fourier Series.) and then integrate over the relevant intervals in x and y:

e.g.

$$\int_{0}^{x_{o}} \int_{0}^{y_{o}} V(x, y) \sin(\alpha_{p} x) \sin(\beta_{q} y) dx dy$$

$$= \int_{0}^{x_{o}} \int_{0}^{y_{o}} \left\{ \left(\sum_{m,n=0}^{\infty} A_{mn} \sin(\alpha_{n} x) \sin(\beta_{m} y) \underbrace{\sinh(\gamma_{mn} z)}_{=\text{constant here}} * \sin(\alpha_{p} x) \sin(\beta_{q} y) \right) + \left(\sum_{m,n=0}^{\infty} B_{mn} \cos(\alpha_{n} x) \cos(\beta_{m} y) \underbrace{\sinh(\gamma_{mn} z)}_{=\text{constant here}} * \sin(\alpha_{p} x) \sin(\beta_{q} y) \right) + \left(\sum_{m,n=0}^{\infty} C_{mn} \sin(\alpha_{n} x) \sin(\beta_{m} y) \underbrace{\cosh(\gamma_{mn} z)}_{=\text{constant here}} * \sin(\alpha_{p} x) \sin(\beta_{q} y) \right) + \left(\sum_{m,n=0}^{\infty} D_{mn} \cos(\alpha_{n} x) \cos(\beta_{m} y) \underbrace{\cosh(\gamma_{mn} z)}_{=\text{constant here}} * \sin(\alpha_{p} x) \sin(\beta_{q} y) \right) dx dy$$

Fourier Functions: orthonormality properties of sin () and cos ():

$$\int_{0}^{x_{o}} \sin(\alpha_{n}x) \sin(\alpha_{p}x) dx = \sum_{\substack{some \\ constant}} \delta_{np} \begin{pmatrix} =1 & \text{for } n = p \\ =0 & \text{for } n \neq p \end{pmatrix}$$

$$\int_{0}^{x_{o}} \cos(\alpha_{n}x) \sin(\alpha_{p}x) dx = 0$$
Kroenecker δ -function:
$$\delta_{np} \begin{pmatrix} =1 & \text{for } n = p \\ =0 & \text{for } n \neq p \end{pmatrix}$$

So all terms in above Σ 's vanish, <u>except</u> for a single term (in each sum) – that for the A_{pq} / B_{pq} / C_{pq} / D_{pq} coefficient!!! The BC's will e.g. kill off 3 out of remaining 4 non-zero terms, thus only one term survives...

Suppose only the A_{pq} coefficient survives. Its analytic form is now known for all integers p and q.

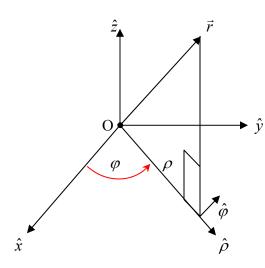
Then the analytic form of 3-D potential V(x, y, z) is now known – it is an infinite series solution of the form:

$$V(x, y, z) = \sum_{m,n=0}^{\infty} A_{mn} \sin(\alpha_n x) \sin(\beta_m y) \sinh(\gamma_{mn} z)$$

$$= \sqrt{\alpha_n^2 + \beta_m^2}$$

Laplace's Equation $\nabla^2 V(\rho, \varphi, z) = 0$

And Potential Problems with Cylindrical Symmetry (Cylindrical Coordinates)



$$\vec{r} = \vec{\rho} + \vec{z} = \rho \hat{\rho} + z \hat{z}$$
 $r = \sqrt{\rho^2 + z^2}$

$$\nabla^{2}V(\rho,\varphi,z) = 0$$

$$= \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^{2}} \frac{\partial^{2}V}{\partial \varphi^{2}} + \frac{\partial^{2}V}{\partial z^{2}} = 0$$

$$= \frac{\partial^{2}V}{\partial \rho^{2}} + \frac{1}{\rho} \frac{\partial V}{\partial \rho} + \frac{1}{\rho^{2}} + \frac{\partial^{2}V}{\partial \varphi^{2}} + \frac{\partial^{2}V}{\partial z^{2}} = 0$$

Again, we use the separation of variables technique:

 $V(\rho, \varphi, z) = R(\rho)Q(\varphi)Z(z) \Rightarrow \nabla^2 V = 0 \Rightarrow \text{ yields 3 ordinary differential equations:}$

$$\frac{d^{2}Z(z)}{dz^{2}} - k^{2}Z(z) = 0 \implies Z(z) = e^{\pm kz}$$

$$\frac{d^{2}Q(\varphi)}{d\varphi^{2}} + v^{2}Q(\varphi) = 0 \implies Q(\varphi) = e^{\pm iv\varphi}$$

$$\frac{d^{2}R(\rho)}{d\rho^{2}} + \frac{1}{\rho}\frac{dR(\rho)}{d\rho} + \left(k^{2} - \frac{v^{2}}{\rho^{2}}\right)R(\rho) = 0$$

Note(s):

- 1.) k is arbitrary without imposing boundary conditions.
- 2.) k appears in both Z(z) and $R(\rho)$ equations.
- 3.) In order for $Q(\varphi)$ to be <u>single-valued</u> (i.e. $Q(\varphi) = Q(\varphi + 2\pi)$), $v \underline{must}$ be an integer!

Let
$$x = kp$$
 Then: $\frac{d^2R(x)}{dx^2} + \frac{1}{x}\frac{dR(x)}{dx} + \left(1 - \frac{v^2}{x^2}\right)R(x) = 0 \iff \text{Bessel's Equation}$

$$R(x) = x^{\alpha} \sum_{j=0}^{\infty} a_j x^j \iff \text{Power Series Solution}$$
 $\alpha = \pm \nu$

$$a_{2j} \equiv -\frac{1}{4j(j+\alpha)}a_{2j-2}$$
 for $j = 0, 1, 2, 3, \dots$

All <u>odd</u> powers of x_j have vanishing coefficients, i.e. $a_1 = a_3 = a_5 = a_{2j+1} = 0$

Coefficients a_{2i} expressed in terms of a_0 :

$$a_{2j} = \left[\frac{(-1)^{j} \Gamma(\alpha + 1)}{2^{2j} j! \Gamma(j + \alpha + 1)} \right] a_0 = \frac{(-1)^{j}}{2^{2(j+\alpha)} j! \Gamma(j + \alpha + 1)}$$

$$a_0 = \frac{1}{2^{\alpha} \Gamma(\alpha + 1)}$$

$$\Gamma(x) = \text{Gamma Function}$$

where

There exist TWO solutions of the Radial Equation (i.e. Bessel's Equation):

They are:

Bessel Functions of 1st kind, of order $\pm \nu$:

$$J_{+\nu}(x) = \left(\frac{x}{2}\right)^{\nu} \sum_{j=0}^{\infty} \frac{\left(-1\right)^{j}}{j!\Gamma(j+\nu+1)} \left(\frac{x}{2}\right)^{2j}$$
These series converge for
$$J_{-\nu}(x) = \left(\frac{x}{2}\right)^{-\nu} \sum_{j=0}^{\infty} \frac{\left(-1\right)^{j}}{j!\Gamma(j-\nu+1)} \left(\frac{x}{2}\right)^{2j}$$
all values of x .

If v is <u>not</u> an integer (which is <u>not</u> the case here), then the $J_{\pm\nu}(x)$ form a pair of linearly independent solutions to the 2nd order Bessel's Equation: $R(x) = A_{\nu}J_{\nu}(x) + A_{-\nu}J_{-\nu}(x) \quad \text{for } \nu \neq \text{integer}$

However, note that if ν = integer (which <u>is</u> the case for us here) then the Bessel functions $J_{\nu}(x)$ and $J_{-\nu}(x)$ are <u>NOT</u> linearly independent!!

If
$$v = m = \text{integer } (0, 1, 2, 3, ...)$$
, then $J_{-m}(x) = (-1)^m J_m(x)$

 \therefore \Rightarrow We must find another <u>linearly independent</u> solution for R(x) when v = m = integer

It is "customary" to replace $J \pm v(x)$ by just $J_{\nu}(x)$ and another function $N_{\nu}(x)$ (called Neumann Functions)

Where:
$$N_{\nu}(x) = \text{Bessel Function of } 2^{\text{nd}} \text{ kind } \equiv \frac{J_{\nu}(x)\cos(\nu\pi) - J_{-\nu}(x)}{\sin(\nu\pi)}$$

NOTE: $N_{\nu}(x)$ is divergent (i.e singular) at $x \to 0$

Complex Bessel Functions = Bessel Functions of 3rd kind = Hankel Functions

Hankel Functions are <u>complex</u> linear combinations of $J_{\nu}(x)$ and $N_{\nu}(x)$ (Bessel Functions of 1st and 2nd kind respectively). They are defined as follows:

$$H_{\nu}^{(1)}(x) \equiv J_{\nu}(x) + iN_{\nu}(x)$$
 The Hankel Functions $H_{\nu}^{(1)}(x)$ and $H_{\nu}^{(2)}(x)$ also form a fundamental set/basis of solutions to the Bessel equation.

18

The General Solution for $\nabla^2 V(\rho, \varphi, z) = 0$ in Cylindrical Coordinates:

$$V(\rho, \varphi, z) = R(\rho)Q(\varphi)Z(z)$$

 $\cosh(k_{mn}z)$ is also allowed

$$V(\rho, \varphi, z) = \sum_{m,n=0}^{\infty} J_m(k_{mn}\rho) \sinh(k_{mn}z) \left[A_{mn} \sin(m\varphi) + B_{mn} \cos(m\varphi) \right]$$

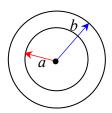
$$\cosh(\mathbf{k}_{mn}\mathbf{z}) \text{ is also allowed}$$

$$+ \sum_{m n=0}^{\infty} N_m (k_{mn}\rho) \sinh(k_{mn}\mathbf{z}) \left[C_{mn} \sin(m\varphi) + D_{mn} \cos(m\varphi) \right]$$

Apply ALL boundary conditions on surfaces (and also impose for $r = \infty$, that $V(r = \infty) = \text{finite!}$ {If $r = \infty$ is part of the problem!})

Note that sometimes we want $V(\vec{r})$ only inside some finite region of space, e.g. coaxial capacitor – if so, then don't have to worry about $r = \infty$ solutions being finite – an example – the Coaxial Capacitor:

End View of a Coaxial Capacitor

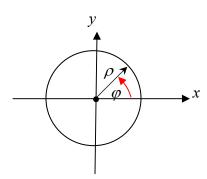


If the $\vec{r} = 0$ region is an <u>excluded region</u> in the problem, then <u>must</u> include (i.e. allow) the $N_v(x)$ solutions (singular at $x = k\rho = 0$)!!!

If $\vec{r} = 0$ region <u>is</u> included in problem, then <u>ALL</u> coefficients $C_{mn} = D_{mn} \equiv 0$ (for all m, n), if $V(\rho, \varphi, z)$ is finite $(\partial, \vec{r} = 0)$.

Using/imposing BC's on surfaces, orthogonality conditions on sines, cosines, $J_{\nu}(x)$, $N_{\nu}(x)$, etc. can find / determine values for all A_{mn} , B_{mn} , C_{mn} , D_{mn} coefficients!!

<u>2-Dimensional Circular Symmetry</u> Laplace's Equation in (Circular) Cylindrical Coordinates



$$\nabla^2 V(\rho, \varphi) = 0$$

$$V(\rho, \varphi) = R(\rho)Q(\varphi)$$
Again try product solution—

Potential, $V(\rho, \varphi)$ is independent of z (e.g. infinitely long coaxial cable)

$$\nabla^{2}V(\rho,\varphi) = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho}\right) + \frac{1}{\rho^{2}} \frac{\partial^{2}V}{\partial \varphi^{2}} = 0$$

Get:

$$\frac{\rho}{R(\rho)} \frac{d}{d\rho} \left(\rho \frac{dR(\rho)}{d\rho} \right) = C_1 = -\frac{1}{Q(\varphi)} \frac{d^2 Q(\varphi)}{d\varphi^2} \qquad \text{Let } C_I = k^2$$

Then:
$$\rho \frac{d}{d\rho} \left(\rho \frac{dR(\rho)}{d\rho} \right) - k^2 R(\rho) = 0$$
 and $\frac{d^2 Q(\varphi)}{d\varphi^2} + k^2 Q(\varphi) = 0$

Require all solutions $Q(\varphi)$ to be single-valued, i.e. $Q(\varphi) = Q(\varphi + 2\pi)$ because \underline{must} have $V(\varphi) = V(\varphi + 2\pi)$.

Solutions for $Q(\varphi)$ are of the form:

$$Q(\varphi) = A\cos k\varphi + B\sin k\varphi$$

$$Q(\varphi) = Q(\varphi + 2k\pi)$$
 requires $k = \text{integer} = 0, \pm 1, \pm 2, \pm 3, \dots \pm n \dots$

$$\frac{d^2Q(\varphi)}{d\varphi^2} + n^2Q(\varphi) = 0 \implies Q_n(\varphi) = A_n \cos(n\varphi) + B_n \sin(n\varphi)$$

singular @
$$\rho \to \infty$$
 singular @ $\rho = 0$

$$\rho \frac{d}{d\rho} \left(\rho \frac{dR(\rho)}{d\rho} \right) - n^2 R(\rho) = 0 \Rightarrow R_n(\rho) = C_n \rho^n + D_n \rho^{-n} \quad \text{for } n \ge 1 \text{ (i.e. } n = 1, 2, 3, \ldots)$$

$$R_o(\rho) = C_o + D_o \ln(\rho) \quad \text{for } n = 0 \text{ only}$$

General Solution for $\nabla^2 V(\rho, \varphi) = 0$ in Two Dimensions: Cylindrical (a.k.a. Zonal) Harmonics

$$V(\rho,\varphi) = V_0 + V_1 \ln(\rho) + \sum_{n=1}^{\infty} \left[a_n \rho^n \cos(n\varphi) + b_n \rho^{-n} \cos(n\varphi) + c_n \rho^n \sin(n\varphi) + d_n \rho^{-n} \sin(n\varphi) \right]$$

Again, apply BC's on all relevant surfaces, impose $V(r \to \infty)$ = finite, etc. – these will dictate / determine all coefficients, V_0 , V_1 , a_n , b_n , c_n and d_n .

i.e. Solve for V_0 , V_1 , a_n , b_n , c_n and d_n by applying all boundary conditions, $V(r \to \infty) = \text{finite}$, and using orthogonality conditions / properties:

$$a_{n} = "A" \int_{0}^{2\pi} d\varphi \int_{0}^{\rho_{o}} d\rho \ \rho \ V(\rho, \varphi) \rho^{n} \cos(n\varphi)$$

$$dA = \rho d\rho d\varphi$$

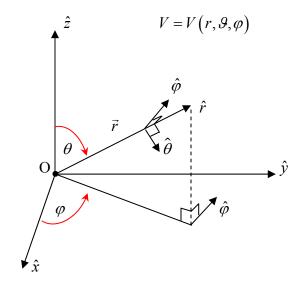
$$b_{n} = "B" \int_{0}^{2\pi} d\varphi \int_{0}^{\rho_{o}} d\rho \ \rho \ V(\rho, \varphi) \rho^{-n} \cos(n\varphi)$$

$$c_{n} = "C" \int_{0}^{2\pi} d\varphi \int_{0}^{\rho_{o}} d\rho \ \rho \ V(\rho, \varphi) \rho^{n} \sin(n\varphi)$$

$$d_{n} = "D" \int_{0}^{2\pi} d\varphi \int_{0}^{\rho_{o}} d\rho \ \rho \ V(\rho, \varphi) \rho^{-n} \sin(n\varphi)$$

"A", "B", "C", "D" are appropriate normalization factors (we will discuss later).

Laplace's Equation $\nabla^2 V(r, \theta, \varphi) = 0$ **In Spherical Coordinates**



$$\nabla^{2}V(r,\theta,\varphi) = 0$$

$$= \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial V}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} V}{\partial \varphi^{2}} = 0$$

Again, try separation of variables / try product solution:

$$V(r, \theta, \varphi) = \frac{U(r)}{r} P(\theta) Q(\varphi) \iff \text{ of this form!!}$$

$$P(\theta)Q(\varphi)\frac{d^2U(r)}{dr^2} + \frac{U(r)Q(\varphi)}{r^2\sin\theta}\frac{d}{d\theta}\left(\sin\theta\frac{dP(\theta)}{d\theta}\right) + \frac{U(r)P(\theta)}{r^2\sin^2\theta}\frac{d^2Q(\varphi)}{d\varphi^2} = 0$$

Multiply by $r^2 \sin^2 \theta / U(r) P(\theta) Q(\varphi)$:

$$\underbrace{r^{2} \sin^{2} \theta \left[\frac{1}{U(r)} \frac{d^{2}U(r)}{dr^{2}} + \frac{1}{r^{2} \sin \theta} \frac{1}{P(\theta)} \frac{d}{d\theta} \left(\sin \theta \frac{dP(\theta)}{d\theta} \right) \right]}_{function \ of \ r + \theta \ only} + \underbrace{\frac{1}{Q(\varphi)} \frac{d^{2}Q(\varphi)}{d\varphi^{2}}}_{function \ of \ \varphi \ only} = 0$$

Now:
$$\frac{1}{Q(\varphi)} \frac{d^2 Q(\varphi)}{d\varphi^2} = -m^2 \implies \frac{d^2 Q(\varphi)}{d\varphi^2} + m^2 Q(\varphi) = 0$$

Solutions are of the form: $Q(\varphi) = e^{\pm im\varphi}$ where m = integer = 0, 1, 2, 3, ...

Since
$$V(r, \theta, \varphi) = V(r, \theta, \varphi \pm 2\pi)$$
 i.e. $Q(\varphi) = Q(\varphi \pm 2\pi)$

Then: $Q(\varphi)$ must be single-valued!

$$\frac{1}{r^2 \sin^2 \theta} \left[\frac{1}{U(r)} \frac{d^2 U(r)}{dr^2} + \frac{1}{r^2 \sin \theta} \frac{1}{P(\theta)} \frac{d}{d\theta} \left(\sin \theta \frac{dP(\theta)}{d\theta} \right) \right] = +m^2$$

$$\frac{1}{U(r)} \frac{d^2 U(r)}{dr^2} = -\frac{1}{r^2 \sin \theta} \frac{1}{P(\theta)} \frac{d}{d\theta} \left(\sin \theta \frac{dP(\theta)}{d\theta} \right) + \frac{m^2}{r^2 \sin^2 \theta}$$

$$\frac{r^{2}}{U(r)} \frac{d^{2}U(r)}{dr^{2}} = -\frac{1}{\sin \theta} \frac{1}{P(\theta)} \frac{d}{d\theta} \left(\sin \theta \frac{dP(\theta)}{d\theta} \right) + \frac{m^{2}}{\sin^{2} \theta} = -\alpha \quad (\alpha \ge 0)$$
function only of r
must hold for any/all r and θ !!

$$\therefore \frac{d^2U(r)}{dr^2} - \frac{\alpha}{r^2}U(r) = 0 \quad \text{and} \quad \frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{dP(\theta)}{d\theta}\right) + \left[\alpha - \frac{m^2}{\sin^2\theta}\right] P(\theta) = 0$$

let / define $\alpha = \ell(\ell+1)$ where $\ell = \text{integer} = 0, 1, 2, 3, ...$

(Trust me, ⊙ I know the answer . . .)

$$\therefore \frac{d^2U(r)}{dr^2} - \frac{\ell(\ell+1)}{r^2}U(r) = 0 \text{ and } \frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{dP(\theta)}{d\theta}\right) + \left[\ell(\ell+1) - \frac{m^2}{\sin^2\theta}\right] P(\theta) = 0$$

Now let
$$x = \cos \theta$$

$$x^2 = \cos^2 \theta = 1 - \sin^2 \theta$$
$$dx = d \cos \theta = \sin \theta d\theta$$
$$\therefore \sin^2 \theta = 1 - \cos^2 \theta = 1 - x^2$$
$$\sin \theta = \sqrt{1 - x^2}$$

$$\underline{\text{Then}}: \frac{1}{\sin \theta} \frac{d}{d\theta} \left(\frac{\sin^2 \theta}{\sin \theta} \frac{dP(\theta)}{d\theta} \right) + \left[\ell \left(\ell + 1 \right) - \frac{m^2}{\sin^2 \theta} \right] P(\theta) = 0$$

Becomes:
$$\frac{d}{dx} \left((1-x^2) \frac{dP(x)}{dx} \right) + \left[\ell(\ell+1) - \frac{m^2}{(1-x^2)} \right] P(x) = 0 \iff \text{Generalized Legendre' Equation}$$

General Solutions of the radial equation, $\frac{d^2U(r)}{dr^2} - \frac{\ell(\ell+1)}{r^2}U(r) = 0$ are of the form:

$$U(r) = Ar^{\ell} + Br^{-(\ell+1)}$$
 (l + A + B) are determined by boundary conditions...

For m = 0 (azimuthally-symmetric problems – no φ -dependence) the general solution for azimuthally-symmetric potential $V(r, \theta)$ is of the form:

$$V\left(r,\theta\right) = \sum_{\ell=0}^{\infty} \left[A_{\ell}r^{\ell} + B_{\ell}r^{-(\ell+1)}\right] \underbrace{P_{\ell}\left(\cos\theta\right)}_{\substack{\text{"ordinary" Legendre'} \\ Polynomial of order }\ell}$$

The coefficients A_{ℓ} and B_{ℓ} are determined by the boundary conditions

n.b. If
$$\exists$$
 no charges at $r = 0$, then $B_{\ell} = 0 \ \forall \ \ell !!$

Rodrigues' Formula is useful for "ordinary" Legendre' Polynomials:

$$P_{\ell}(x) \equiv \left(\frac{1}{2^{\ell} \ell!}\right) \frac{d^{\ell}}{dx^{\ell}} (x^2 - 1)^{\ell}$$

The coefficients A_{ℓ} and B_{ℓ} can be found / determined by evaluating $V(r,\theta)$ on the conducting surfaces in the problem, e.g. suppose we want to determine $V(\vec{r})$ inside a conducting sphere of radius r = a. Then on the surface of the conducting sphere at radius r = a (an equipotential!):

$$V(r = a, \theta) = \sum A_{\ell} a^{\ell} P_{\ell}(\cos \theta) = \text{constant} \iff \text{Legendre' Series}$$

n.b. inside conducting sphere, e.g. there are no charges at r = 0 \therefore $B_{\ell} = 0 \ \forall \ \ell$

In order to determine coefficients, take *inner product*:

$$A_{\ell} = \underbrace{\left(\frac{2\ell+1}{2a^{\ell}}\right)}_{normalization} \int_{0}^{\pi} V(r=a,\theta) P_{\ell}(\cos\theta) \sin\theta d\theta$$

Orthogonality condition on $P_{\ell}(x)$'s:

$$\int_{-1}^{-1} P_{\ell'}(x) P_{\ell}(x) dx = \frac{2}{(2\ell+1)} \underbrace{\delta_{\ell'\ell}}_{\text{Kroenecker}} \begin{cases} \delta_{il} = 0 \text{ for } l' \neq l \\ \delta_{il} = 1 \text{ for } l' = l \end{cases}$$

n.b. The $P_{\ell}(\cos \theta)$ functions form a <u>complete orthonormal basis set</u> on the <u>unit circle</u> (r = 1) for $-1 \le \cos \theta \le 1$ or: $0 \le \theta \le \pi$

"Ordinary" Legendre' Polynomials $P_{\ell}(x)$ $(x = \cos \theta)$ defined on the interval $-1 \le x \le 1$:

$$P_{0}(x) = 1$$

$$P_{1}(x) = x$$

$$P_{2}(x) = \frac{1}{2}(3x^{2} - 1)$$

$$P_{3}(x) = \frac{1}{2}(5x^{3} - 3x)$$

$$P_{4}(x) = \frac{1}{8}(35x^{4} - 30x^{2} + 3)$$

$$P_{5}(x) = \frac{1}{8}(63x^{5} + 70x^{3} + 15x)$$

Note: All $P_{\ell=even}(x)$ functions are <u>even</u> functions of x: $P_{\ell=even}(-x) = +P_{\ell=even}(x)$ All $P_{\ell=odd}(x)$ functions are <u>odd</u> functions of x: $P_{\ell=odd}(-x) = -P_{\ell=odd}(x)$ under $x \to -x$ reflection. Generally speaking, $P_{\ell}(-x) = (-1)^{\ell} P_{\ell}(x)$.

If 3-D spherical coordinate problem <u>DOES</u> have azimuthal / φ -dependence, then $m^2 \neq 0$ in Associated Legendre' Equation (A.L.E.):

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{dP(\theta)}{d\theta} \right) + \left[\ell(\ell+1) - \frac{m^2}{\sin^2\theta} \right] P(\theta) = 0 \qquad x = \cos\theta$$

Solutions to A.L.E. are Associated Legendre' Polynomials (A.L.P.'s)

Associated Legendre' Polynomials: $P_{\ell}^{m}(x) = (-1)^{m} (1-x^{2})^{\frac{m}{2}} \frac{d^{m}}{dx^{m}} \underbrace{P_{\ell}(x)}_{\substack{\text{"ordinary"} \\ \text{Legendre'} \\ Polynomial}}$

 $m = \pm \text{ integer } \neq 0$ i.e. $m = \pm 1, \pm 2, \pm 3, ...$ but have a constraint on m ! ! ! $-\ell \le m \le +\ell$

i.e. $m = -\ell, -\ell + 1, -\ell + 2, \dots -2, -1, 0, +1, +2, \ell -2, \ell -1, \ell$

Also:
$$P_{\ell}^{-m}(x) = (-1)^m \frac{(\ell-m)!}{(\ell+m)!} P_{\ell}^m(x)$$

Orthogonality condition for $P_{\ell}^{m}(x)$ for fixed m:

$$\int_{-1}^{1} P_{\ell'}^{m}(x) P_{\ell}^{m}(x) dx = \frac{2}{(2\ell+1)} \frac{(\ell+m)!}{(\ell-m)!} \underbrace{\mathcal{S}_{\ell'\ell}}_{\text{Kroenecker}}$$

$$\underbrace{\mathcal{S}_{\text{function}}}_{\text{δ-function}}$$

We now define <u>normalized</u> $P(\theta)Q(\varphi)$ functions known as <u>Spherical Harmonics</u>:

$$Y_{\ell m}(\theta, \varphi) = \sqrt{\frac{(2\ell+1)(\ell-m)!}{4\pi}} P_{\ell}^{m}(\cos\theta) \underbrace{e^{im\varphi}}_{=Q_{m}(\varphi)}$$

The Spherical Harmonics $Y_{\ell m}(\theta, \varphi)$ form a <u>complete orthonormal set of basis "vectors" on the surface of the unit sphere</u> (r = 1)

Note that
$$Y_{\ell-m}(\theta,\varphi) = (-1)^m Y_{\ell m}^*(\theta,\varphi)$$
 complex conjugate
$$i.e. \ i \to -i \text{ where } i \equiv \sqrt{-1}$$

 $Y_{\ell_m}(\theta,\varphi)$ Normalization and Orthogonality Condition:

$$\int_{0}^{2\pi} d\varphi \int_{0}^{\pi} \sin\theta d\theta Y_{\ell'm'}^{*}(\theta,\varphi) Y_{\ell m}(\theta,\varphi) = \delta_{\ell'\ell} \delta_{m'm}$$
i.e.
$$\int_{\Omega=0}^{\Omega=4\pi} d\Omega Y_{\ell'm'}^{*}(\theta,\varphi) Y_{\ell m}(\theta,\varphi) = \delta_{\ell'\ell} \delta_{m'm}$$

$$d\Omega = \sin\theta d\theta d\varphi$$

Completeness' Relation:
$$\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} Y_{\ell m}^{*}(\theta, \varphi) Y_{\ell m}(\theta, \varphi) = \underbrace{\delta(\cos \theta - \cos \theta')}_{\text{DIRAC}} \underbrace{\delta(\varphi - \varphi')}_{\text{functions}}$$

$\underline{Y_{\ell_m}(\theta,\varphi)}$ Spherical Harmonics

$$\ell = 0 \qquad \left\{ Y_{00} = \frac{1}{\sqrt{4\pi}} \right.$$

Use
$$Y_{\ell-m}(\theta,\varphi) = (-1)^m Y_{\ell m}^*(\theta,\varphi)$$

in order to obtain $Y_{2-2}, Y_{2-1}, Y_{3-3}, Y_{3-2}, Y_{3-1}$ etc.

$$\ell = 1 \qquad \begin{cases} Y_{11} = -\sqrt{\frac{3}{8\pi}} \sin \theta e^{i\phi} \\ Y_{10} = -\sqrt{\frac{3}{4\pi}} \cos \theta \end{cases}$$

Note:

$$Y_{\ell m}(\theta, \varphi) = \sqrt{\frac{(2\ell+1)}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}} P_{\ell}^{m}(\cos\theta) e^{im\varphi}$$

$$\sqrt{(2\ell+1)}$$

$$Y_{\ell m}(\theta, \varphi) \equiv \sqrt{\frac{15}{4\pi}} \frac{15}{(\ell + m)!} P_{\ell}^{m}(\cos \theta)$$

$$\begin{cases} Y_{22} = \frac{1}{4} \sqrt{\frac{15}{2\pi}} \sin^{2} \theta e^{2i\varphi} & Y_{\ell 0}(\theta, \varphi) = \sqrt{\frac{(2\ell + 1)}{4\pi}} P_{\ell}(\cos \theta) \\ Y_{21} = -\sqrt{\frac{5}{8\pi}} \sin \theta \cos \theta e^{i\varphi} \\ Y_{20} = \sqrt{\frac{5}{4\pi}} \left(\frac{3}{2} \cos^{2} \theta - \frac{1}{2}\right) \end{cases}$$

$$\ell = 3$$

$$\begin{cases} Y_{33} = -\frac{1}{4}\sqrt{\frac{35}{4\pi}}\sin^{3}\theta e^{3i\varphi} \\ Y_{32} = \frac{1}{4}\sqrt{\frac{105}{2\pi}}\sin^{2}\theta\cos\theta e^{2i\varphi} \\ Y_{31} = -\frac{1}{4}\sqrt{\frac{21}{4\pi}}\sin\theta \left(5\cos^{2}\theta - 1\right)e^{i\varphi} \\ Y_{30} = \sqrt{\frac{7}{4\pi}}\left(\frac{5}{2}\cos^{3}\theta - \frac{3}{2}\cos\theta\right) \\ \dots \text{ etc.} \end{cases}$$

General Solution for Laplace's Equation $\nabla^2 V(r,\theta,\varphi)$ in Spherical Polar Coordinates

Lecture Notes 7

$$V\left(r,\theta,\varphi\right) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{+\ell} \left[A_{\ell m} r^{\ell} + B_{\ell m} r^{-(\ell+1)} \right] Y_{\ell m} \left(\theta,\varphi\right)$$

Coefficients $A_{\ell m}$ and $B_{\ell m}$ are determined by / from Boundary Conditions on spherical surface(s)

If
$$V = V(\theta, \varphi)$$
 on surface (e.g. at $r = a$)

(i.e. no charge at $r = 0$ in problem $\rightarrow B_{\ell_m} = 0 \ \forall_{\ell_m}$)

Then:
$$V(\theta, \varphi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{+\ell} A_{\ell m} Y_{\ell m}(\theta, \varphi)$$
 on surface $(r = a)$.

And:
$$A_{\ell m} = \int_{0}^{4\pi} d\Omega Y_{\ell m}^{*}(\theta, \varphi) V(\theta, \varphi)$$
 on surface $(r = a)$.

Note:
$$V(\underbrace{\theta=0}_{\substack{\text{"north"}\\ \text{pole}}}, \varphi) = \sum_{\ell=0}^{\infty} \sqrt{\frac{(2\ell+1)}{4\pi}} A_{\ell 0}$$

$$A_{\ell 0} = \sqrt{\frac{(2\ell+1)}{4\pi}} \int_0^{4\pi} d\Omega P_{\ell}(\cos\theta) V(\theta, \varphi)$$

General Comments: The method of separation of variables used in Laplace's equation $\nabla^2 V = 0$ in rectangular, cylindrical and spherical coordinates shows up again in Poisson's Equation

$$\nabla^2 V = -\frac{\rho_{free}}{\varepsilon_o}$$
 and also in the wave equation (valid for all classical wave phenomena)

$$\nabla^2 \psi(\vec{r}, t) + \frac{1}{c^2} \frac{\partial^2 \psi(\vec{r}, t)}{\partial t^2} = 0 \text{ and in Schrödinger's wave equation } H\psi = E\psi \text{ in Quantum}$$

Mechanics problems. These equations will appear again and again, in one form or another for E&M, Classical Mechanics, Quantum Mechanics courses as well as for Classical / Newtonian Gravity problems...

For more detailed information e.g. on separation of variables and solutions to 3-D Wave

Equation
$$\nabla^2 \psi = -\frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2}$$
 in rectangular, cylindrical and spherical coordinates see Prof. S.

Errede lecture notes (Lecture IV – parts 1 & 2) on (sound) waves in 1-D, 2-D, 3D Physics 406 Acoustical Physics of Music website:

http://online.physics.uiuc.edu/courses/phys406/406 lectures.html

and also see/read his Fourier Analysis Lectures on this website, if interested.