EPIC™ (Enhanced-Performance Implanted CMOS) Submicron Process

- Typical \(V_{OLP} \) (Output Ground Bounce) < 0.8 V at \(V_{CC} = 3.3 \text{ V} \), \(T_A = 25^\circ \text{C} \)
- Typical \(V_{OHV} \) (Output \(V_OH \) Undershoot) > 2 V at \(V_{CC} = 3.3 \text{ V} \), \(T_A = 25^\circ \text{C} \)
- Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V \(V_{CC} \))
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (\(C = 200 \text{ pF}, R = 0 \))
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages

description

This 10-bit buffer/bus driver is designed for 1.65-V to 3.6-V \(V_{CC} \) operation.

The SN74LVC828A provides a high-performance bus interface for wide data paths or buses carrying parity.

The 3-state control gate is a 2-input AND gate with active-low inputs so that if either output-enable (\(OE1 \) or \(OE2 \)) input is high, all ten outputs are in the high-impedance state. The SN74LVC828A provides inverting data at its outputs.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

To ensure the high-impedance state during power up or power down, \(OE \) should be tied to \(V_{CC} \) through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74LVC828A is characterized for operation from \(-40^\circ \text{C}\) to \(85^\circ \text{C}\).

FUNCTION TABLE

<table>
<thead>
<tr>
<th>INPUTS</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(OE1) (OE2) (A)</td>
<td>(Y)</td>
</tr>
<tr>
<td>L L L</td>
<td>H</td>
</tr>
<tr>
<td>L L H</td>
<td>L</td>
</tr>
<tr>
<td>H X X</td>
<td>Z</td>
</tr>
<tr>
<td>X H X</td>
<td>Z</td>
</tr>
</tbody>
</table>

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated.
logic symbol†

logic diagram (positive logic)

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage range, \(V_{CC} \) ... -0.5 V to 6.5 V
Input voltage range, \(V_I \) (see Note 1) ... -0.5 V to 6.5 V
Voltage range applied to any output in the high-impedance or power-off state, \(V_O \)
(see Note 1) ... -0.5 V to 6.5 V
Voltage range applied to any output in the high or low state, \(V_O \)
(see Notes 1 and 2) ... -0.5 V to \(V_{CC} + 0.5 \) V
Input clamp current, \(I_{IK} \) (\(V_I < 0 \)) .. -50 mA
Output clamp current, \(I_{OK} \) (\(V_O < 0 \)) .. -50 mA
Continuous output current, \(I_O \) .. ±50 mA
Continuous current through \(V_{CC} \) or GND .. ±100 mA
Package thermal impedance, \(\theta_{JA} \) (see Note 3): DB package ... 104°C/W
DW package ... 81°C/W
PW package ... 120°C/W
Storage temperature range, \(T_{stg} \) ... -65°C to 150°C

‡ Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The value of \(V_{CC} \) is provided in the recommended operating conditions table.
3. The package thermal impedance is calculated in accordance with JESD 51.
Recommended Operating Conditions (see Note 4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Operating</th>
<th>Data Retention Only</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CC})</td>
<td>Supply voltage</td>
<td>1.65</td>
<td>3.6</td>
</tr>
<tr>
<td>(V_{ISP})</td>
<td>High-level input voltage</td>
<td>(V_{CC} = 1.65) V to 1.95 V</td>
<td>0.65 (V_{CC})</td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>Low-level input voltage</td>
<td>(V_{CC} = 1.65) V to 1.95 V</td>
<td>0.35 (V_{CC})</td>
</tr>
<tr>
<td>(I_{OH})</td>
<td>High-level output current</td>
<td>(V_{CC} = 1.65) V</td>
<td>–4</td>
</tr>
<tr>
<td>(I_{OL})</td>
<td>Low-level output current</td>
<td>(V_{CC} = 1.65) V</td>
<td>4</td>
</tr>
<tr>
<td>(\Delta t/\Delta v)</td>
<td>Input transition rise or fall rate</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>(T_A)</td>
<td>Operating free-air temperature</td>
<td>–40</td>
<td>85</td>
</tr>
</tbody>
</table>

NOTE 4: All unused inputs of the device must be held at \(V_{CC} \) or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.
SN74LVC828A
10-BIT BUFFER/DRIVER
WITH 3-STATE OUTPUTS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>(V_{CC})</th>
<th>MIN</th>
<th>TYP†</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{VOH})</td>
<td>(I_{OH} = -100 , \mu A)</td>
<td>1.65 V to 3.6 V</td>
<td>VCC–0.2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(I_{OH} = -4 , mA)</td>
<td>1.65</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(I_{OH} = -8 , mA)</td>
<td>2.3</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(I_{OH} = -12 , mA)</td>
<td>2.7</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(I_{OH} = -24 , mA)</td>
<td>3</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{VOL})</td>
<td>(I_{OL} = 100 , \mu A)</td>
<td>1.65 V to 3.6 V</td>
<td>0.2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(I_{OL} = 4 , mA)</td>
<td>1.65</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(I_{OL} = 8 , mA)</td>
<td>2.3</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(I_{OL} = 12 , mA)</td>
<td>2.7</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(I_{OL} = 24 , mA)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(I_{I})</td>
<td>(V_{I} = 0) to 5.5 V</td>
<td>3.6</td>
<td>±5</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td></td>
<td>(I_{off})</td>
<td>(V_{I}) or (V_{O} = 5.5 , V)</td>
<td>0</td>
<td>±10</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td></td>
<td>(I_{OZ})</td>
<td>(V_{O} = 0) to 5.5 V (\dagger)</td>
<td>3.6</td>
<td>±10</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td></td>
<td>(I_{ICC})</td>
<td>(V_{I} = V_{CC}) or GND (\ddagger)</td>
<td>3.6</td>
<td>10</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3.6 , V \leq V_{I} \leq 5.5 , V) (\ddagger)</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta I_{CC})</td>
<td>One input at (V_{CC} - 0.6 , V), Other inputs at (V_{CC}) or GND (\ddagger)</td>
<td>2.7 V to 3.6 V</td>
<td>500</td>
<td></td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(C_{I})</td>
<td>(V_{I} = V_{CC}) or GND</td>
<td>3.3</td>
<td>5</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>(C_{O})</td>
<td>(V_{O} = V_{CC}) or GND</td>
<td>3.3</td>
<td>7</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>

† All typical values are at \(V_{CC} = 3.3 \, V, \, T_{A} = 25^\circ C \).
‡ This applies in the disabled state only.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>FROM (INPUT)</th>
<th>TO (OUTPUT)</th>
<th>V(V_{CC} = 1.8 , V) ±0.15 V</th>
<th>V(V_{CC} = 2.5 , V) ±0.2 V</th>
<th>V(V_{CC} = 2.7 , V)</th>
<th>V(V_{CC} = 3.3 , V) ±0.3 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{pd})</td>
<td>A</td>
<td>Y</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>7.1</td>
</tr>
<tr>
<td>(I_{on})</td>
<td>OE</td>
<td>Y</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>8.5</td>
</tr>
<tr>
<td>(I_{dis})</td>
<td>OE</td>
<td>Y</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>7.3</td>
</tr>
<tr>
<td>(I_{sk(o)}) (\ddagger)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

§ This information was not available at the time of publication.
¶ Skew between any two outputs of the same package switching in the same direction

operating characteristics, \(T_{A} = 25^\circ C \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>V(V_{CC} = 1.8 , V) ±0.15 V</th>
<th>V(V_{CC} = 2.5 , V) ±0.2 V</th>
<th>V(V_{CC} = 2.7 , V)</th>
<th>V(V_{CC} = 3.3 , V) ±0.3 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{pd})</td>
<td>Power dissipation capacitance per buffer/driver</td>
<td>Outputs enabled</td>
<td>f = 10 MHz</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outputs disabled</td>
<td></td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

§ This information was not available at the time of publication.
PARAMETER MEASUREMENT INFORMATION

$V_{CC} = 1.8 \, V \pm 0.15 \, V$

From Output Under Test

$C_L = 30 \, pF$
(see Note A)

S1

GND

$2 \times V_{CC}$
Open

LOAD CIRCUIT

Timing Input

$V_{CC/2}$
$0 \, V$

t_{su}
$V_{CC/2}$
t_{h}
V_{CC}

Data Input

$V_{CC/2}$
$V_{CC/2}$

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

Input

$V_{CC/2}$
$0 \, V$

V_{CC}

Output

$V_{CC/2}$
$V_{CC/2}$
V_{OH}
V_{OL}

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

NOTES:
A. C_L includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
 Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $PRR \leq 10 \, MHz$, $Z_O = 50 \, \Omega$, $t_r \leq 2 \, ns$, $t_l \leq 2 \, ns$.
D. The outputs are measured one at a time with one transition per measurement.
E. t_{PLZ} and t_{PZH} are the same as t_{DIS}.
F. t_{PZL} and t_{PZH} are the same as t_{EN}.
G. t_{PLH} and t_{PHL} are the same as t_{PD}.

Figure 1. Load Circuit and Voltage Waveforms

<table>
<thead>
<tr>
<th>TEST</th>
<th>S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{pd}</td>
<td>$2 \times V_{CC}$</td>
</tr>
<tr>
<td>t_{PLZ}</td>
<td>Open</td>
</tr>
<tr>
<td>t_{PZH}</td>
<td>Open</td>
</tr>
</tbody>
</table>
PARAMETER MEASUREMENT INFORMATION

\[V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V} \]

LOAD CIRCUIT

\[C_L = 30 \text{ pF} \] (see Note A)

\[2 \times V_{CC} \]

\[\text{Open} \]

\[\text{GND} \]

\[500 \Omega \]

\[S1 \]

VOLTAGE WAVEFORMS

SETUP AND HOLD TIMES

PROPAGATION DELAY TIMES

ENABLE AND DISABLE TIMES

TEST

<table>
<thead>
<tr>
<th>(t_{pd})</th>
<th>(t_{PLZ}/t_{PZH})</th>
<th>(t_{PHZ}/t_{PZH})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>(2 \times V_{CC})</td>
<td></td>
</tr>
</tbody>
</table>

\[V_{CC} \]

\[0 \text{ V} \]

\[V_{CC}/2 \]

\[V_{OL} \]

\[V_{OH} \]

\[0 \text{ V} \]

\[V_{CC} \]

\[0 \text{ V} \]

\[V_{OL} + 0.15 \text{ V} \]

\[V_{OH} - 0.15 \text{ V} \]

\[0 \text{ V} \]

\[V_{CC} \]

\[0 \text{ V} \]

\[V_{OL} \]

\[V_{OH} \]

NOTES:

A. \(C_L \) includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: \(PRR \leq 10 \text{ MHz}, Z_O = 50 \text{ \textOmega}, t_r \leq 2 \text{ ns}, t_f \leq 2 \text{ ns} \).

D. The outputs are measured one at a time with one transition per measurement.

E. \(t_{PLZ} \) and \(t_{PHZ} \) are the same as \(t_{dis} \).

F. \(t_{PZH} \) and \(t_{PZH} \) are the same as \(t_{en} \).

G. \(t_{PZH} \) and \(t_{PZH} \) are the same as \(t_{pd} \).

Figure 2. Load Circuit and Voltage Waveforms
PARAMETER MEASUREMENT INFORMATION

\[V_{CC} = 2.7 \text{ V AND 3.3 V } \pm 0.3 \text{ V} \]

LOAD CIRCUIT

- **Input**: 1.5 V, 0 V
- **Data Input**: 1.5 V, 0 V
- **Output**: 1.5 V, 1.5 V
- **Load Circuit**: 500 \(\Omega \), 500 \(\Omega \)
- **Input Data**: 2.7 V, 0 V
- **Output Data**: 0 V, 1.5 V
- **Input propagate delay**: \(t_{pd} \)
- **Output propagate delay**: \(t_{PLZ} / t_{PZH} \) and \(t_{PHZ} / t_{PZH} \)
- **Open/Close**: 6 V, GND

Voltage Waveforms

Setup and Hold Times
- **Input**: 2.7 V, 0 V
- **Output**: 1.5 V, 1.5 V

Propagation Delay Times
- **Input**: 1.5 V, 0 V
- **Output**: 1.5 V, 1.5 V

Enable and Disable Times
- **Input**: 2.7 V, 0 V
- **Output**: 1.5 V, 1.5 V

Notes:

- **A**: \(C_L \) includes probe and jig capacitance.
- **B**: Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- **C**: All input pulses are supplied by generators having the following characteristics: PRR \(\leq 10 \) MHz, \(Z_O = 50 \) \(\Omega \), \(t_r \leq 2.5 \) ns, \(t_f \leq 2.5 \) ns.
- **D**: The outputs are measured one at a time with one transition per measurement.
- **E**: \(t_{PLZ} \) and \(t_{PZH} \) are the same as \(t_{dis} \).
- **F**: \(t_{PZL} \) and \(t_{PHZ} \) are the same as \(t_{en} \).
- **G**: \(t_{PLH} \) and \(t_{PHL} \) are the same as \(t_{pd} \).

Figure 3. Load Circuit and Voltage Waveforms
IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated